30 May 2022 to 2 June 2022
Asia/Dubai timezone

Direct prediction of fluid-fluid displacement efficiency in ordered porous media using the pore structure

2 Jun 2022, 13:30
15m
Oral Presentation (MS06-A) Physics of multiphase flow in diverse porous media MS06-A

Speaker

Tian Tian Lan

Description

Fluid-fluid displacement in porous media is common in many natural and engineering settings. Extensive studies investigated the transition of displacement patterns, but the direct prediction of the displacement efficiency using the pore structure is lacking. Here, we propose a method to directly predict the displacement efficiency with no need of solving the Navier-Stokes and the Hagen-Poiseuille equations in ordered porous media. The predictive method origins from the pore-scale filling events, which can be divided into two directions such as the bulk flow direction and the transverse direction. For the bulk flow direction, the pore-filling event (burst) dominates the fluid invasion, and the invading phase forms a thin fingering channel. For the transverse direction, we introduce three invasion modes (compact, taper, and widen) to quantify fluid invasion. We can predict the finger width in each column, and the displacement efficiency can be predicted through the weighted average of the predicted finger width. We evaluate the predictive method using microfluidic experiments and pore-network simulations, confirming that the predictive method can reasonably predict the displacement efficiency in ordered porous media. The predictive method can directly predict fluid invasion according to pore structure, thus greatly improving the computational efficiency and is of significance in multiphase flow control.

References

Ahmed, T. (2010). Principles of Waterflooding. In Reservoir Engineering Handbook (pp. 909–1095). Elsevier. https://doi.org/10.1016/B978-1-85617-803-7.50022-5
Aker, E., Maloy, K., Hansen, A., & Batrouni, G. (1998). A two-dimensional network simulator for two-phase flow in porous media. Transport in Porous Media, 32(2), 163–186. https://doi.org/10.1023/ A:1006510106194
Al-Housseiny, T. T., Tsai, P. A., & Stone, H. A. (2012). Control of interfacial instabilities using flow geometry. Nature Physics, 8(10), 747–750. https://doi.org/10.1038/nphys2396
Armstrong, R. T., & Berg, S. (2013). Interfacial velocities and capillary pressure gradients during Haines jumps. Physical Review E, 88(4). https://doi.org/10.1103/PhysRevE.88.043010
Babchin, A., Brailovsky, I., Gordon, P., & Sivashinsky, G. (2008). Fingering instability in immiscible displacement. Physical Review E, 77(2). https://doi.org/10.1103/PhysRevE.77.026301
Bischofberger, I., Ramachandran, R., & Nagel, S. R. (2014). Fingering versus stability in the limit of zero interfacial tension. Nature Communications, 5. https://doi.org/10.1038/ncomms6265
Borgman, O., Darwent, T., Segre, E., Goehring, L., & Holtzman, R. (2019). Immiscible fluid displacement in porous media with spatially correlated particle sizes. Advances in Water Resources, 128, 158–167. https://doi.org/10.1016/j.advwatres.2019.04.015
Chang, C., Kneafsey, T. J., Wan, J., Tokunaga, T. K., & Nakagawa, S. (2020). Impacts of Mixed‐Wettability on Brine Drainage and Supercritical CO2 Storage Efficiency in a 2.5‐D Heterogeneous Micromodel. Water Resources Research, 56(7), 51. https://doi.org/10.1029/2019WR026789
Chaudhary, K., Cardenas, M. B., Wolfe, W. W., Maisano, J. A., Ketcham, R. A. & Bennett, P. C. (2013) Pore-scale trapping of supercritical CO2 and the role of grain wettability and shape. Geophysical Research Letters, 40 (15), 3878–3882. https://doi.org/10.1002/grl.50658
Chen, F., Chang, M., & Hsieh, P. (2008). Two-phase transport in the cathode gas diffusion layer of PEM fuel cell with a gradient in porosity. International Journal of Hydrogen Energy, 33(10), 2525–2529. https://doi.org/10.1016/j.ijhydene.2008.02.077
Chen, Y.-F., Fang, S., Wu, D.-S., & Hu, R. (2017). Visualizing and quantifying the crossover from capillary fingering to viscous fingering in a rough fracture. Water Resources Research, 53(9), 7756–7772. https://doi.org/10.1002/2017WR021051
Chen, Y.-F., Guo, N., Wu, D.-S., & Hu, R. (2018). Numerical investigation on immiscible displacement in 3D rough fracture: Comparison with experiments and the role of viscous and capillary forces. Advances in Water Resources, 118, 39–48. https://doi.org/10.1016/j.advwatres.2018.05.016
Cottin, C., Bodiguel, H., & Colin, A. (2011). Influence of wetting conditions on drainage in porous media: A microfluidic study. Physical Review E, 84(2), 026311. https://doi.org/10.1103/PhysRevE.84.026311
Ershadnia, R., Wallace, C.D., Soltanian, M.R. (2020). CO2 geological sequestration in heterogeneous binary media: Effects of geological and operational conditions. Advances in Geo-Energy Research, 4(4), 392-405. https://doi.org/10.46690/ager.2020.04.05
Ferrari, A., Jimenez-Martinez, J., Le Borgne, T., Meheust, Y., & Lunati, I. (2015). Challenges in modeling unstable two-phase flow experiments in porous micromodels. Water Resources Research, 51(3), 1381–1400. https://doi.org/10.1002/2014WR016384
Geistlinger, H., & Zulfiqar, B. (2020). The Impact of Wettability and Surface Roughness on Fluid Displacement and Capillary Trapping in 2‐D and 3‐D Porous Media: 1. Wettability‐Controlled Phase Transition of Trapping Efficiency in Glass Beads Packs. Water Resources Research, 56(10). https://doi.org/10.1029/2019WR026826
Ghasemi, F., Ghaedi, M., Escrochi, M. (2020). A new scaling equation for imbibition process in naturally fractured gas reservoirs. Advances in Geo-Energy Research, 4(1): 99-106. https://doi.org/ 10.26804/ager.2020.01.09.
Glass, R., Rajaram, H., Nicholl, M., & Detwiler, R. (2001). The interaction of two fluid phases in fractured media. Current Opinion in Colloid & Interface Science, 6(3), 223–235. https://doi.org/10.1016/S1359-0294(01)00086-3
Grotberg, J. B., & Jensen, O. E. (2004). Biofluid mechanics in flexible tubes. Annual Review of Fluid Mechanics, 36(1), 121–147. https://doi.org/10.1146/annurev.fluid.36.050802.121918
Holtzman, R. (2016). Effects of Pore-Scale Disorder on Fluid Displacement in Partially-Wettable Porous Media. Scientific Reports, 6(1), 36221. https://doi.org/10.1038/srep36221
Holtzman, R., & Segre, E. (2015). Wettability Stabilizes Fluid Invasion into Porous Media via Nonlocal, Cooperative Pore Filling. Physical Review Letters, 115(16), 164501. https://doi.org/10.1103/ PhysRevLett.115.164501
Hu, R., Lan, T., Wei, G.-J., & Chen, Y.-F. (2019a). Phase diagram of quasi-static immiscible displacement in disordered porous media. Journal of Fluid Mechanics, 875, 448–475. https://doi.org/doi:10.1017/ jfm.2019.504
Hu, R., Wan, J., Kim, Y., & Tokunaga, T. K. (2017). Wettability impact on supercritical CO2 capillary trapping: Pore-scale visualization and quantification: Wettability on CO2 capillary trapping. Water Resources Research, 53(8), 6377–6394. https://doi.org/10.1002/2017WR020721
Hu, R., Wan, J., Yang, Z., Chen, Y., & Tokunaga, T. (2018). Wettability and Flow Rate Impacts on Immiscible Displacement: A Theoretical Model. Geophysical Research Letters, 45(7), 3077–3086. https://doi.org/ 10.1002/2017GL076600
Hu, R., Zhou, C., Wu, D., Yang, Z., & Chen, Y. (2019b). Roughness Control on Multiphase Flow in Rock Fractures. Geophysical Research Letters, 46(21), 12002–12011. https://doi.org/10.1029/ 2019GL084762
Huh, D., Fujioka, H., Tung, Y.-C., Futai, N., Paine, R., Grotberg, J. B., & Takayama, S. (2007). Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proceedings of the National Academy of Sciences, 104(48), 18886–18891. https://doi.org/ 10.1073/pnas.0610868104
Jung, M., Brinkmann, M., Seemann, R., Hiller, T., Sanchez de La Lama, M., & Herminghaus, S. (2016). Wettability controls slow immiscible displacement through local interfacial instabilities. Physical Review Fluids, 1(7), 074202. https://doi.org/10.1103/PhysRevFluids.1.074202
Knudsen, H., Aker, E., & Hansen, A. (2002). Bulk flow regimes and fractional flow in 2D porous media by numerical simulations. Transport in Porous Media, 47(1), 99–121. https://doi.org/10.1023/ A:1015039503551
Lan, T., Hu, R., Yang, Z., Wu, D., & Chen, Y. (2020). Transitions of Fluid Invasion Patterns in Porous Media. Geophysical Research Letters, 47(20). https://doi.org/10.1029/2020GL089682
Lee, H., Gupta, A., Hatton, T. A., & Doyle, P. S. (2017). Creating Isolated Liquid Compartments Using Photopatterned Obstacles in Microfluidics. Physical Review Applied, 7(4), 044013. https://doi.org/ 10.1103/PhysRevApplied.7.044013
Lenormand, R., Touboul, E., & Zarcone, C. (1988). Numerical models and experiments on immiscible displacements in porous media. Journal of Fluid Mechanics, 189, 165–187. https://doi.org/ 10.1017/S0022112088000953
Li, G., Zhan, L., Yun, T., & Dai, S. (2020). Pore‐Scale Controls on the Gas and Water Transport in Hydrate‐Bearing Sediments. Geophysical Research Letters, 47(12). https://doi.org/10.1029/2020GL086990
Liu, H., Ju, Y., Wang, N., Xi, G., & Zhang, Y. (2015). Lattice Boltzmann modeling of contact angle and its hysteresis in two-phase flow with large viscosity difference. Physical Review E, 92(3). https://doi.org/10.1103/PhysRevE.92.033306
Lu, J., Zou, X., Zhao, Z., Mu, Z., Zhao, Y., & Gu, Z. (2015). Cell Orientation Gradients on an Inverse Opal Substrate. ACS Applied Materials & Interfaces, 7(19), 10091–10095. https://doi.org/10.1021/ acsami.5b02835
Lu, N. B., Browne, C. A., Amchin, D. B., Nunes, J. K., & Datta, S. S. (2019). Controlling capillary fingering using pore size gradients in disordered media. Physical Review Fluids, 4(8), 084303. https://doi.org/10.1103/PhysRevFluids.4.084303
Maes, J., & Geiger, S. (2018). Direct pore-scale reactive transport modelling of dynamic wettability changes induced by surface complexation. Advances in Water Resource, 111, 6–19. https://doi.org/10.1016/ j.advwatres.2017.10.032
Måløy, K., Feder, J., & Jossang, T. (1985). Viscous fingering fractals in porous-media. Physical Review Letters, 55(24), 2688–2691. https://doi.org/10.1103/PhysRevLett.55.2688
Molnar, I. L., Gerhard, J. I., Willson, C. S., & O’Carroll, D. M. (2020). Wettability Effects on Primary Drainage Mechanisms and NAPL Distribution: A Pore‐Scale Study. Water Resources Research, 56(1). https://doi.org/10.1029/2019WR025381
Morrow, N., & Mason, G. (2001). Recovery of oil by spontaneous imbibition. Current Opinion in Colloid & Interface Science, 6(4), 321–337. https://doi.org/10.1016/S1359-0294(01)00100-5
Paterson, L. (1981). Radial fingering in a hele shaw cell. Journal of Fluid Mechanics, 113(DEC), 513–529. https://doi.org/10.1017/S0022112081003613
Pavuluri, S., Maes, J., & Doster, F. (2018). Spontaneous imbibition in a microchannel: Analytical solution and assessment of volume of fluid formulations. Microfluidics and Nanofliudis, 22(8). https://doi.org/10.1007/s10404-018-2106-9
Primkulov, B. K., Pahlavan, A. A., Fu, X., Zhao, B., MacMinn, C. W., & Juanes, R. (2019). Signatures of fluid–fluid displacement in porous media: Wettability, patterns and pressures. Journal of Fluid Mechanics, 875, R4. https://doi.org/10.1017/jfm.2019.554
Primkulov, B. K., Pahlavan, A. A., Fu, X., Zhao, B., MacMinn, C. W., & Juanes, R. (2021). Wettability and Lenormand’s diagram. Journal of Fluid Mechanics, 923, A34. https://doi.org/10.1017/jfm.2021.579
Primkulov, B. K., Talman, S., Khaleghi, K., Rangriz Shokri, A., Chalaturnyk, R., Zhao, B., MacMinn, C. W., & Juanes, R. (2018). Quasistatic fluid-fluid displacement in porous media: Invasion-percolation through a wetting transition. Physical Review Fluids, 3(10), 104001. https://doi.org/10.1103/ PhysRevFluids.3.104001
Rabbani, H. S., Or, D., Liu, Y., Lai, C.-Y., Lu, N. B., Datta, S. S., Stone, H. A., & Shokri, N. (2018). Suppressing viscous fingering in structured porous media. Proceedings of the National Academy of Sciences, 115(19), 4833–4838. https://doi.org/10.1073/pnas.1800729115
Raeini, A. Q., Blunt, M. J., & Bijeljic, B. (2012). Modelling two-phase flow in porous media at the pore scale using the volume-of-fluid method. Journal of Computational Physics, 231(17), 5653–5668. https://doi.org/10.1016/j.jcp.2012.04.011
Saiz, E., Zimmermann, E. A., Lee, J. S., Wegst, U. G. K., & Tomsia, A. P. (2013). Perspectives on the role of nanotechnology in bone tissue engineering. Dental Materials, 29(1), 103–115. https://doi.org/ 10.1016/j.dental.2012.08.001
Scardovelli, R., & Zaleski, S. (1999). Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics, 31, 567–603. https://doi.org/10.1146/annurev.fluid.31.1.567
Singh, K., Jung, M., Brinkmann, M., & Seemann, R. (2019). Capillary-Dominated Fluid Displacement in Porous Media. Annual Review of Fluid Mechanics, 51(1), 429–449. https://doi.org/10.1146/annurev-fluid-010518-040342
Singh, K., Scholl, H., Brinkmann, M., Di Michiel, M., Scheel, M., Herminghaus, S., & Seemann, R. (2017). The Role of Local Instabilities in Fluid Invasion into Permeable Media. Scientific Reports, 7. https://doi.org/10.1038/s41598-017-00191-y
Skalak, R., Ozkaya, N., & Skalak, T. C. (1989). Biofluid Mechanics. Biofluid Mechanics, 38.
Tang, H., Wang, S., Pan, M., & Yuan, R. (2007). Porosity-graded micro-porous layers for polymer electrolyte membrane fuel cells. Journal of Power Sources, 166(1), 41–46. https://doi.org/10.1016/j.jpowsour. 2007.01.021
Wang, S., & Mulligan, C. N. (2004). An evaluation of surfactant foam technology in remediation of contaminated soil. Chemosphere, 57(9), 1079–1089. https://doi.org/10.1016/j.chemosphere. 2004.08.019
Wang, X. L., Zhang, H. M., Zhang, J. L., Xu, H. F., Tian, Z. Q., Chen, J., Zhong, H. X., Liang, Y. M., & Yi, B. L. (2006). Micro-porous layer with composite carbon black for PEM fuel cells. Electrochimica Acta, 51(23), 4909–4915. https://doi.org/10.1016/j.electacta.2006.01.048
Wu, D.-S., Hu, R., Lan, T., & Chen, Y.-F. (2021). Role of Pore-Scale Disorder in Fluid Displacement: Experiments and Theoretical Model. Water Resources Research, 57(1). https://doi.org/ 10.1029/2020WR028004
Yang, G., Cao, Y., Fan, J., Liu, H., Zhang, F., Zhang, P., Huang, C., Jiang, L., & Wang, S. (2014). Rapid Generation of Cell Gradients by Utilizing Solely Nanotopographic Interactions on a Bio-Inert Glass Surface. Angewandte Chemie International Edition, 53(11), 2915–2918. https://doi.org/ 10.1002/anie.201309974
Yang, Z., Niemi, A., Fagerlund, F., & Illangasekare, T. (2013). Two-phase flow in rough-walled fractures: Comparison of continuum and invasion-percolation models. Water Resources Research, 49(2), 993–1002. https://doi.org/10.1002/wrcr.20111
Yuan, C., & Chareyre, B. (2017). A pore-scale method for hydromechanical coupling in deformable granular media. Computer Methods in Applied Mechanics and Engineering, 318, 1066–1079. https://doi.org/10.1016/j.cma.2017.02.024
Yuan, C., Chareyre, B., & Darve, F. (2016). Pore-scale simulations of drainage in granular materials: Finite size effects and the representative elementary volume. Advances in Water Resources, 95, 109–124. https://doi.org/10.1016/j.advwatres.2015.11.018
Zhang, C., Oostrom, M., Wietsma, T. W., Grate, J. W., & Warner, M. G. (2011). Influence of Viscous and Capillary Forces on Immiscible Fluid Displacement: Pore-Scale Experimental Study in a Water-Wet Micromodel Demonstrating Viscous and Capillary Fingering. Energy & Fuels, 25(8), 3493–3505. https://doi.org/10.1021/ef101732k
Zhao, B., MacMinn, C. W., & Juanes, R. (2016). Wettability control on multiphase flow in patterned microfluidics. Proceedings of the National Academy of Sciences, 113(37), 10251–10256. https://doi.org/10.1073/pnas.1603387113
Zhao, B., MacMinn, C. W., Primkulov, B. K., Chen, Y., Valocchi, A. J., Zhao, J., et al., (2019). Comprehensive comparison of pore-scale models for multiphase flow in porous media. Proceedings of the National Academy of Sciences, 116(28), 13799–13806. https://doi.org/10.1073/pnas.1901619116
Zheng, X., Mahabadi, N., Yun, T. S., & Jang, J. (2017). Effect of capillary and viscous force on CO2 saturation and invasion pattern in the microfluidic chip. Journal of Geophysical Research-Solid Earth, 122(3), 1634–1647. https://doi.org/10.1002/2016JB013908

Participation Online
Country China
MDPI Energies Student Poster Award No, do not submit my presenation for the student posters award.
Time Block Preference Time Block A (09:00-12:00 CET)
Acceptance of the Terms & Conditions Click here to agree

Primary authors

Tian Tian Lan Ran Hu (Wuhan University) Wei Guo (Wuhan University) Guan-Ju Wei Yi-Feng Chen (Wuhan University) Chuang-Bing Zhou

Presentation materials

There are no materials yet.