A prominent technology for green hydrogen generation is the polymer electrolyte membrane (PEM) electrolyzer. However, the energy efficiency of PEM electrolyzers must improve dramatically to become economically competitive. Here, we engineer the wettability of commercial porous transport layers (PTLs) to make them superhydrophilic. We find the superhydrophilic PTLs increase the efficiency of...
Proton exchange membrane fuel cells are promising energy devices that involve complex two-phase flow and transport in multiple porous layers. During fuel cell operation, oxygen in the flow channel diffuses through a porous cathode gas diffusion layer (GDL) and a microporous layer (MPL) to the catalyst layer, where the oxygen reduction reaction takes place. The water generated via oxygen...
Zinc-air flow batteries are energy storage devices that have started to receive attention due to their high energy density, and zinc metal being particularly appealing since it’s safe and cost effective. Increasing the performance of these electrochemical devices and their useful life will have a substantial economic and operational impact on the development of energy storage projects....
The cell potential of polymer electrolyte fuel cells (PEFCs) is reduced by accumulation of liquid water in the cathode gas diffusion layers (GDLs). The GDL is usually composed of a substrate (i.e., carbon paper) and a microporous layer (MPL). The MPLs are usually made of carbon nanoparticles and fluoropolymers. It is well known that MPLs suppress water accumulation in the GDL. Water...