Terahertz pulsed imaging (TPI) technology can be used to track a liquid front in-situ during the imbibition of porous media such as pharmaceutical tablets and ceramic catalyst supports [1,2]. The method can resolve relatively fast transport phenomena with a time resolution of less than 100 ms. It can also be used as a non-contact and non-invasive quality inspection method to estimate the...
Dynamic X-ray micro-CT was used to get a better mechanistic understanding of the disintegration process of pharmaceutical solid dosage forms (tablets or capsules). Dosage forms are the predominant form to control active pharmaceutical ingredients to a patient and typically consist out of compacted powder with added excipients. In order to deliver the active pharmaceutical ingredients to the...
Understanding wicking dynamics in textiles is challenging due to the complex pore structure of yarns as well as of the interfaces between interlaced yarns. Time-resolved synchrotron X-ray tomographic microscopy (XTM) is performed at the TOMCAT beamline of the Swiss Light Source of Paul Scherrer Institute in Switzerland. Full high-quality tomographic scans of 5.5 mm height with voxel size 2.75...
Energy storage has been an area of interest for many decades. Underground storage is a way to store a huge amount of energy, but it has many challenges along with safety and economic impacts. Hydrogen storage in the subsurface can be considered as a long-term energy storage solution. Green hydrogen can be produced from the excess electricity during peak production, it can be injected into the...
Recent advances in nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) technology are paving ways to probe physical insights into transport phenomena in porous media, without destroying opaque materials structure or disturbing phase change processes. In this work, we utilize low-field NMR-MRI technology to capture in-situ melting dynamics of ice in homogeneous and...
Pore-scale X-ray imaging combined with a steady-state flow experiment is used to study the displacement processes during waterflooding in an altered-wettability carbonate, Ketton limestone, with distinct bimodal porosity. We simultaneously characterize macroscopic and local multi-phase flow parameters, including relative permeability, capillary pressure, wettability, and pore-by-pore fluid...
1. Introduction
Micro-CT can be used to study the structure of samples from a centimeter to micrometer scale.
One of the main limitations in this, however, is the inability to perform true material identification without prior knowledge, as contrast inside a micro-CT scan is mainly caused by the atomic number of the sample. Also density, used x-ray energy, the x-ray spectrum and the...
Hydraulic fracturing to generate complex fracture networks is the most effective stimulation method to develop shale reservoirs. However, the stimulated reservoir volume (SRV) is limited due to the high stress difference, high breakdown pressure and undeveloped natural fracture. Acid treatment has been approved to be an effective way to enhance SRV by reducing shale rock mechanical strength...
Fluid dynamics in porous materials plays an important role in nature and in industry, e.g. groundwater flow in aquifers or the performance of filtration devices and porous catalysts. The intricate confining pore geometries in such materials can lead to complex flow phenomena, particularly during e.g. multiphase and non-Newtonian flows, which are difficult to reproduce in numerical or...
At present, reinforced concrete is the most commonly used building material. Due to possible CO2 reservoir leakage, reinforced concrete may be corroded by high concentration CO2 (> 1 atm CO2 partial pressure). In order to study the effects of corrosion time, CO2 partial pressure and relative humidity (RH) on structural deterioration of reinforced concrete exposed to high concentration CO2,...
Magnetic Resonance Imaging (MRI) is well known to be a powerful non-destructive means to get local information on the spatial distribution of water in porous media. However, it does not easily provide quantitative information on the pore size distribution, the pore filling, and the evolution of these characteristics in time, i.e. the dynamics of the structure and the process. Here we show that...
Carbonate rocks are well-known to be highly heterogeneous which represents a major challenge for subsurface characterization, which is a critical component of energy and earth science applications including enhanced oil recovery, CO2 sequestration and geothermal system evaluation. The first step toward establishing realistic model of carbonates is to integrate quantitative analysis of the pore...
The characteristics of fracture propagation in heterogeneous tight sandstones are critical to volumetric fracturing, which is the key to unlocking unconventional resources in tight sandstones. Quantification of the influence of pre-existing pore systems and particle arrangements on the propagation of fractures is challenging due to inadequate imaging of the internal void systems in tight...
Macroscopic porous materials properties depend on a number of porous media parameters such as porosity, connectivity, pore and throat size distributions, etc. Pore Network Models (PNM) provide a fast and convenient way to estimate those macroscopic parameters by representing a porous medium as a graph [1]. Classical Pore Network extraction methods in literature represent obtaining pore network...
Lyophilization or freeze-drying is commonly applied to stabilize (bio-)pharmaceutical substances and high value foods for long-term storage. The freeze-drying cycle typically consists of three stages: i: freezing ii: primary drying and iii: secondary drying [1]. The freezing step is the most crucial one because the performance of the overall process vastly depends on the freezing step. Since...
X-ray micro-CT is a non-invasive 3D imaging technique that allows the visualisation of the inner structure by obtaining 2D X-ray images at different angles. In recent years, micro-CT scanning has been extensively used for in-situ imaging of transport phenomena in porous media at the pore scale. However, the mentioned studies using lab-based micro-CT devices are generally limited to static...
Accurate modeling of multiphase flow in geological porous media is a critical component of a wide range of energy and environmental science applications, including production of oil and gas, geological sequestration of CO2 and evaluating geothermal systems. This is particularly challenging in carbonate rocks, due to their inherently complex pore systems, associated with multi-scale...