30 May 2022 to 2 June 2022
Asia/Dubai timezone

Modeling contrast perfusion and adsorption in the 3D heart

30 May 2022, 15:10
1h 10m
Poster Presentation (MS20) Biophysics of living porous media: theory, experiment, modeling and characterization Poster

Speaker

RODRIGO Weber dos SANTOS (Federal University of Juiz de Fora)

Description

This work presents a mathematical model to describe the dynamics of perfusion in cardiac tissue. The new model extends a previous one [1] and is able to reproduce clinal exams of contrast-enhanced cardiac magnetic resonance imaging (MRI) of the whole heart (3D) obtained from patients with cardiovascular diseases, such as myocardial infarct.
The new model treats the extravascular and intravascular domains as distinct porous media, where Darcy's law is adopted.
We propose reaction-diffusion-advection equations to capture the dynamics of contrast agents that are typically used in MRI perfusion exams. The identification of myocardial infarct is modeled via adsorption of the contrast on the extracellular matrix.
Different scenarios were simulated and compared to clinical images: normal perfusion; endocardial ischemia due to stenosis; and myocardial infarct. Altogether, the results obtained suggest that the models can support the process of non-invasive cardiac perfusion quantification.

[1] Simulation of the Perfusion of Contrast Agent Used in Cardiac Magnetic Resonance: A Step Toward Non-invasive Cardiac Perfusion Quantification. JR Alves, RAB de Queiroz, M Bär, RW dos Santos. Frontiers in Physiology 10. 2019

References

Simulation of the Perfusion of Contrast Agent Used in Cardiac Magnetic Resonance: A Step Toward Non-invasive Cardiac Perfusion Quantification. JR Alves, RAB de Queiroz, M Bär, RW dos Santos. Frontiers in Physiology 10. 2019

Participation In person
Country Brazil
MDPI Energies Student Poster Award No, do not submit my presenation for the student posters award.
Time Block Preference Time Block A (09:00-12:00 CET)
Acceptance of the Terms & Conditions Click here to agree

Primary authors

RODRIGO Weber dos SANTOS (Federal University of Juiz de Fora) Dr Evandro Dias Gaio (Universidade Federal de Juiz de Fora) Bernardo Rocha (Universidade Federal de Juiz de Fora)

Presentation materials