30 May 2022 to 2 June 2022
Asia/Dubai timezone

‎3D reactive transport modeling of laboratory-scale CO2 injection in limestone leading to ‎wormhole formation

30 May 2022, 15:10
1h 10m
Poster Presentation (MS01) Porous Media for a Green World: Energy & Climate Poster

Speaker

Mrs Atefeh Vafaie (IDAEA-CSIC, Barcelona, Catalonia, Spain )

Description

Carbon capture and storage in deep saline aquifers is a promising approach to mitigate ‎global ‎warming as a first-rate challenge of the world today. The injected CO2 dissolves in brine, ‎making ‎it acidified and promoting geochemical interactions with the rock. Such interactions ‎likely alter ‎CO2 trapping and transport mechanisms, which are directly linked with the carbon ‎mitigation ‎capacity of this technology. In this study, we combine laboratory experiments with 3D ‎reactive ‎transport simulations to better understand geochemical controls on the evolution of ‎carbonate ‎rock structure. A 28-day percolation experiment was conducted on a Pont Du Gard ‎limestone ‎specimen (a cylindrical core of 2.5 cm in diameter and 4.4 cm long) with CO2-‎saturated water at ‎an injection pressure and temperature of 100 bar and 60°C, respectively, ‎replicating subsurface ‎conditions. We integrate fluid chemistry analyses, X-ray imaging, porosity, ‎and permeability measurements to assess the temporal ‎evolution of rock structure, porosity, and ‎permeability in the altering specimen throughout the injection. ‎The employed monitoring ‎procedures consistently point to a porosity enhancement of 9.6% and ‎permeability increase of 3 ‎orders of magnitude. X-ray images depict that the porosity ‎enhancement coincides with the ‎formation of a large wormhole inside the specimen, most likely ‎developed in response to the ‎specimen's natural heterogeneity. A three-dimensional permeability ‎map was built using imaging ‎data to capture the effect of rock heterogeneity on the dynamics of ‎wormhole formation and the ‎evolution of the fluid flow. Preliminary modeling results show that ‎our model can reproduce the ‎total dissolved mineral mass and porosity enhancement of the ‎reacted specimen with high ‎accuracy (2-5% error). The porosity-permeability relationship and ‎mineral surface area are found ‎to impact model predictions. Thus, we calibrate the model against ‎these parameters to precisely ‎track wormhole evolution inside the specimen (i.e., structure and ‎orientation). Sensitivity analyses ‎conducted using the calibrated model reveal the dependency of ‎the dissolution patterns on the ‎injection flow rate to a large extent. Combined experimental and simulation results provide ‎insights into wormhole formation and evolution that will be important during field injection.‎

Participation Online
Country Spain
MDPI Energies Student Poster Award Yes, I would like to submit this presentation into the student poster award.
Time Block Preference Time Block B (14:00-17:00 CET)
Acceptance of the Terms & Conditions Click here to agree

Primary authors

Mrs Atefeh Vafaie (IDAEA-CSIC, Barcelona, Catalonia, Spain ) Dr Jordi Cama (IDAEA-CSIC, Barcelona, Catalonia, Spain) Dr Josep M Soler (IDAEA-CSIC, Barcelona, Catalonia, Spain)

Presentation materials