Numerous porous materials are made of intricate clustering of polydisperse nanoparticles. The particle organization on a length-scale ranging from nanometers to some micrometers is a cornerstone to properly understand transport properties (diffusion-permeation). A strong need to a bottom_up approach mixing SAXS, SANS and 2D -3D imagery technics is highly suitable for these types of multiscale...
Self-assembly of surfactants in confined geometries plays an important role in environmental, chemical and pharmaceutical technology. Adsorption of surfactants at metal oxide and other polar/charged surfaces depends primarily on the nature of their head groups: cationic surfactants exhibit high-affinity adsorption due to the interaction of the positively charged head groups with negative...
The confinement of liquids in porous media greatly influences their physical properties, in particular, when the pore size approaches the molecular length scale. Several mechanisms, such as the pure geometrical restriction and the liquid-solid interaction at the interface contribute to the confinement effects, however, their roles for the drastic changes in the thermodynamic and dynamic...
At the nanoscale the positions of coexistence lines on the phase diagrams are shifted and their new locations depend mainly on the size and shape of the nano-confinement, the structure of the confining walls, and their interaction with the confined substance. Here we show that it is possible to induce structural transformations in a confined system by simply varying the number of molecules...