Fine-grained sedimentary rocks, such as mudstones and shales, contain abundant nanometer- to micrometer-sized pores. These narrow pores create intense fluid-rock interaction that may lead to complicated fluid storage and transport process. Concerns about the accurate evaluation of gas content and diffusion kinetics have led to many experimental studies about gas sorption on shales. However,...
Phase change at the nanoscale is critical to many industrial applications including rapidly emerging unconventional oil and gas production from nanoporous shale reservoirs. The thermodynamic behaviour of hydrocarbons confined to these nanopores is expected to deviate significantly from bulk properties and there is little experimental data to validate theories. This research aims to visually...
Objectives:
CO2 injection, as one of the effective techniques for enhancing recovery of shale gas, has been widely used and proved economically available. In shale, clay minerals play an important role on methane adsorption due to its large volume of micropores. So far, however, a few attentions have been paid on competitive adsorption of CO2/CH4 Mixtures on clay minerals. In this study, we...
Understanding how pressure fronts propagate (diffuse) in unconventional reservoirs is fundamental to transient flow analysis as well as reservoir drainage volume estimation. We have developed an alternative approach to the solution of the 3-D diffusivity equation by directly solving the propagation equation for the “pressure front” of the transient solution. The pressure front equation is an...
Chemicals in the form of nanoparticles or surfactants provide opportunities to improve oil displacement from rocks. They increase the rate of hydrocarbon recovery by breaking down the oil trapped in by-passed zones and separating the residual oil from rock surfaces in the form of tiny droplets suspended in the water phase. In this study, a series of heavy oil displacement experiments are...
Channel fracturing, as a novel technology, has reveived increasing attention in recent years due to its great advantage in promoting the fracture conducitivity as well as reducing consumtion of water and proppant. The open channels created by heterogeneous distribution of proppant are the priority path for oil or gas to pass instead of the pores exist in proppant pack. Since the flow pattern...
The storage and flow mechanisms in shales depend largely on their microstructure. We use two parameters to characterize microstructures, namely specific surface area (SSA) and pore-size distribution (PSD). We use N$_2$ adsorption at 77K to quantify SSA and PSD of nanopores. There are two limitations of the N$_2$ adsorption method due to (1) uncertainties in molecular area due to the quadrupole...