Liquid evaporation rate in porous media is often characterized by two distinct periods. A first drying period (stage I) is characterized by a relatively high and constant drying rate referred to as constant rate period (CRP) where evaporation is supported by a fast internal capillary flow and controlled by the boundary conditions. The second drying period (stage II) is characterized by a lower...
Flexible grids with local grid refinement can be used to model multistage fractured horizontal wells (MFHWs). To resolve multiple horizontal wells accurately, an ultrahigh mesh size is often required. Moreover the unstructured mesh and permeability contrast result in very expensive linear solution processes. It was observed however that most Newton update entries resulting from these systems...
This study aims to understand with more amplitude and clarity the behavior of a porous medium where a pressure wave travels, translated into relative displacements inside the material, using mathematical tools derived from topology and symplectic geometry. The paper starts with a given partial differential equation based on the continuity and conservation theorems to describe the travelling...
Flow in porous media is occurring in a large number of industrial applications such as internal erosion in embankment dams, drying of iron ore pellets, composites manufacturing and paper-making, to mention a few. However, it is also occurring in a number of naturally formed materials, for instance snow. To know the flow through the snow is important when investigating the ageing of fresh snow....
In continuum modeling of porous media, it is necessary to characterize microscopic features of the pore space using a small set of continuum-scale parameters, such as porosity, tortuosity, etc., which are then linked to transport coefficients or other macroscopic properties. For phenomena that depend on the physical dimensions of pores, the pore-size distribution is also commonly used. It is...