The present work deals with the highly efficient parallel implementation of an optimization-based solver for the flow in Discrete Fracture Networks (DFNs).
A DFN is a sets of mutually intersecting planar polygons in the three dimensional space, resembling a system of fractures in the subsoil. Fracture networks are stochastically generated to tackle uncertainty and lack of observations on...
Accurate simulation of fault and fracture mechanics is a key component in a wide number of subsurface engineering applications. Faults and fractures are typically treated by modelers as discontinuity surfaces embedded in three dimensional (3D) continuous media. From a mathematical standpoint, they are described as internal boundaries whose behavior is governed by the displacement and stress...
Geomechanical effects can have a first-order effect on production from naturally and hydraulically fractured reservoirs. Unstructured discrete fracture-matrix methods utilize conforming meshes with fractures represented by N-1 dimensional elements with local mesh refinement about them. Numerous coupled mechanics and flow models are employed on such mesh topologies. While these methods can...
Discrete Fracture Network (DFN) models are the geometrical basis for flow simulation of poro-fractured media in many industrial projects such as deep waste disposal, hydrogeology or petroleum resources. Because the spatial organization of fractures may control the hydrological and mechanical behavior of the fractured rock mass, the geometrical complexity of the network is a key point of the...
Accumulation of large particles on well faces decreases the injectivity. This issue is particularly accute in the case of produced water reinjection (PWRI) and polymer flooding. To maintain operational rates, the injection pressure is increased, which causes fracturing or reopening of existing fractures. Then, the injectivity may be recovered or even increased, but only temporarily, as filter...