In this work we develop an a posteriori-steered algorithm for a two phase compositional flow with exchange of components between the phases in porous media. The discretization of our model is based on a backward Euler scheme in time and a finite volume scheme in space. The phase transition is treated introducing a formulation based on Henry's law. The resulting nonlinear system is solved via...
Textiles are porous media found in a wide variety of configurations, resulting from weaving, knitting or crocheting yarns into networks. Textiles consist of multiple scales of fiber, yarn, fabric and multilayered systems, each showing their own porosity system and complexity. Wicking, or the spontaneous liquid capillary uptake in the resulting multiscale pore system, needs a multiscale...
Understanding the dynamics of fluid flow and transport in porous media is important in several subsurface applications including geologic CO2 storage, hydrocarbon recovery, geothermal energy, and groundwater hydrology. In order to control and optimize said dynamics, it is imperative that these processes be considered at the pore (or micro) scale. Pore-scale models provide a useful means of...
In general, unsupervised machine learning (ML) methods are powerful tools for data analyses to extract essential features hidden in data. The integration of large datasets, powerful computational capabilities, and affordable data storage has resulted in the widespread use of ML in science, technology, and industry. Here we present applications of ML to characterize (1) reactive transport data...
A thermo-hydro-mechanical (THM) finite element model is developed to simulate freezing and thawing in soil. The governing equations are based on averaging theory and include conservation of mass, momentum and energy. The constitutive models constitute the equation of state (EOS) for water, Clausius-Clapeyron relationship for cryogenic suction, and empirical relationship for the melting point...
Future reservoir performance under reservoir uncertainty has been estimated conventionally by posterior model simulations followed by history matching of prior models to observed data. In the history matching step, however, more than hundreds of simulation runs may be required to calibrate prior model parameters such as facies, permeability, and porosity. To address the computational...
As actual CO2 injection is unlikely to take place at Kevin Dome, Montana, the Big Sky Carbon Sequestration Partnership has turned to maximizing the value of existing data acquired at the site. We present the risk assessment work done using the National Risk Assessment Partnership (NRAP) to Kevin Dome, Montana. Geologic CO2 sequestration in saline aquifers poses certain risks including...
Mass transport combined with heterogeneous reaction in homogeneous porous media is a common process encountered in chemical engineering that is of major concern for many applications ranging from packed bed reactors to porous electrodes. In these systems, reactants are transported by diffusion (and eventually by advection) inside the pores where chemical reactions take place at the solid-fluid...
Conventional two-phase flow equations (Richards Equation) for porous media at the macroscale require capillary pressure (Pc) and relative permeability (Kr) measured as a function of saturation (S). However, these equations lack solid theoretical foundation, and there is still a considerable gap between the theory and experiments. In typical experiments, an “average” macroscopic capillary...