The spatial distribution of physical and chemical heterogeneities is critical in many subsurface applications. For instance, the location of reactive minerals is a primary factor controlling the fate and transport of organic and inorganic pollutants in groundwater. A number of studies have focused on using hydrologic measurements and inverse modeling techniques to image physical heterogeneity...
Understanding the nature of solute transport in the subsurface is important for applications such as CO2 storage in deep saline aquifers and the extraction of oil and gas from deep sandstone or carbonate formations. However, limited knowledge exists in this area due to the extent of heterogeneity in geological formations and the additional complexity coming from presence of multiple fluid...
Proper descriptions of heterogeneity are essential for understanding and modeling single phase (e.g. contaminant transport, saltwater intrusion) and multiphase (e.g. geologic carbon storage, enhanced oil recovery) transport problems from the sub-core scale to reservoir scale. Application of medical imaging to experimentally quantify these processes has led to significant progress in...
One of the main mechanisms to immobilize CO2 during geological carbon sequestration is residual trapping as a result of capillary forces at the pore-scale. It is often assumed that in the capillary dominated regime, capillary equilibrium within the system is reached instantaneously. This approximation is valid for homogeneous systems where the largest scale of heterogeneity is at the pore...
During the post-injection and stabilization period of geological carbon sequestration, the primary forces governing CO2 migration and entrapment are capillarity and buoyancy, delineating a specific field of application for numerical flow models. In contrast with conventional modeling approaches that assume laminar viscous flow regime, a modified invasion percolation (MIP) simulator is used to...
Incorporating sub-metre scale capillary pressure heterogeneity into upscaled numerical models is key to the successful prediction of low flow potential plume migration and trapping at the field scale. At low flow potential, nearing the capillary limit, the upscaled equivalent relative permeability incorporating capillary pressure heterogeneity is far from that derived at the viscous limit [1],...