In this study, the detail flow of ink though the printing paper is simulated using pore-scale formulations. The exact 3D topology of an uncoated paper was obtained though micro-tomography imaging to reconstruct the domain with a resolution of 0.9 µm. Afterwards, the reconstructed domain was used for running direct numerical simulation of ink flow in paper. Confocal microscopy was applied to...
Paper curl due to wetting and drying is known to be determined by the degree of fiber swelling, the paper structure and material inner tensions from the paper production process which are released due to wetting. Apart from these well documented processes we have found that the development of paper curl is govererned by different mechanisms depending on the observed time domain.
Our...
Although droplet spreading on smooth surfaces is well known, spreading on
textile materials is still not fully understood. Compared to a solid surface, on
textile the liquid can penetrate the holes in the fabric but also spontaneously flow through the porous networks inside the fabric (wicking), making droplet
spreading more complex compared to smooth surfaces. Understanding...
The inkjet technology fuels the rapidly evolving world of printing. This printing technology delivers good print quality using the flexibility of digital printing at a breakthrough cost price. The R&D department of Océ Technologies, a Canon company, is a major player in the development of inkjet technologies for many different applications.
Liquid spreading, evaporation and imbibition into...
Carbon-fiber papers (CFPs) are an integral component of many energy-conversion and energy-storage technologies, including gas diffusion layers (GDLs) in polymer electrolyte membrane fuel cells (PEM fuel cells), cathode GDL in PEM electrolyzers and metal-air batteries, and as electrodes in redox flow batteries (RFBs). CFPs must fulfill several functions such as providing adequate mechanical...
Understanding fluid flow and deformation processes in thin swelling porous media is critical for developing superior consumer absorbent hygiene products such as wipes, paper towels, feminine pads and diapers [1-4]. Fluid-flow models have proven very valuable for the development of these products and have led to the development of fundamental understandings in transport mechanisms, numerical...