Understanding the evolution of porous media is essential for many subsurface energy applications, including subsurface storage, shale gas production, fracking, CO2 sequestration, nuclear waste storage, and geothermal energy extraction. Both mineral composition and the intial pore structure of the medium play a significant role in this evolution. Conventional Darcy-scale models treat porous...
Understanding reactions in porous materials impacts a wide range of applications including CO2 sequestration, hydraulic fracturing, design of energy storage systems, and supported catalysts. Particularly, the fundamental problem of crystal formation in porous materials raises two important questions: how is the crystallization process affected by the confined space [1], and how can we control...
In-situ combustion (ISC) is an important thermal enhanced oil recovery technique. Significant open ISC questions are raised including the effect of coke formation on the pore structure and permeability during high temperature reaction in ISC process. In this study, a combination of X-ray computed microtomography (uCT) and LB simulation was used to evaluate the alteration of the geometric...
Mineral dissolution and precipitation reactions in porous media can alter formation properties, including porosity and permeability, in complex ways. While porosity increases with mineral dissolution and decreases with mineral precipitation, permeability alterations largely depend on the location of reactions in individual pores and the greater pore network. Pore network models enable...
A reservoir-scale numerical model was developed with the use of multi-phase reactive transport code TOUGHREACT to estimate porosity, permeability and mineral composition changes of Lower Tuscaloosa (LT) sandstone formation and Marine Shale (MS) caprock overlying LT formation when CO2 is injected into LT formation. The reservoir-scale numerical model was developed based on geological settings...