Objectives/Scope:
The understanding of proppant transport plays a critical role in estimating propped fracture dimensions and performance. Existing models generally assume a vertical planar geometry, whereas the reality in the subsurface may be much more complex. We use the discrete element method to simulate field scale proppant transport in complex fracture networks. Our results show that...
Transport processes in low permeability materials are likely to be dominated by fracture flow as found in fluid production in shale oil and gas reservoirs and in crystalline-rock geothermal systems. Fracture behavior in these systems is typically studied using saw-cut, laboratory fractured or “natural” fractured specimens that provide useful data on idealized fractures but that do not provide...
The study of fractures, fracture networks and especially fracture propagation is of great interest in rock phyiscs and geomechanics. Geothermal and enhanced oil recovery projects rely on the porosity, permeability and storativity properties of the underground rocks. When a rock has a large number of fractures, and these interconnect each other, the amount of fluid that can be transported...
Multiphase flow through fractured porous media has been of a great interest for decades because fractures can be the dominant flow paths in a wide range of environments, from groundwater flow and geothermal transport to fractured oil reservoirs and caprock integrity for gas and carbon storage projects. The fundamentals of multiphase flow in fractures have been studied both experimentally,...
Natural and injected fluids in the subsurface often vary in composition and have different physical properties such as density and viscosity. It is well known that fracture aperture distributions control flow, transport, and mixing of fluids within a fracture. In this study, the effect of fracture orientation on fluid mixing is examined for two cases with a density contrast (1) between...