Wood fiber based materials are of high interest in building insulation. Their application is desirable due to the sustainability of renewable resources. Furthermore, wood fiber based materials outmatch petrochemical based materials with respect to health aspects during process and application.
The insulation properties of such fiber based materials are often characterized experimentally,...
Ceramic foams play a crucial role in thermal engineering, as their porosity confers interesting properties which, combined with their high-temperature stability, allows them to meet both heat exchange and heat insulation demands. To facilitate optimization of the pore-scale morphology, numerous techniques have been developed to generate periodic representative volume elements (RVEs) of the...
Porous materials find frequent use in numerous thermal applications, offering a strong reduction of the total heat flow. Typical applications can be found in the automotive industry and aerospace engineering for the protection of sensitive components, but also in the building industry where heat losses through the opaque building components still account for a large part of the needed heating...
This article describes the direct comparison between pore-level computations on a spherical-void-phase (SVP) porous material and volume-averaged computations done for the same domain. Pore- level simulations are conducted on random SVP geometries generated using the Discrete Element Modelling (DEM) approach developed by Dyck & Straatman [1] over a range of flow and heating conditions. ...
The effective thermal conductivity of porous materials is determined by all details of their microstructure. Since lower bounds (both Wiener and Hashin-Shtrikman bounds) are not available for porous materials (with vacuous voids), all predictions based on the porosity alone are necessarily model-based and thus tentative. In this contribution we first recall the exact solution of the...