Counter-current spontaneous imbibition (SI) is an important transfer mechanism that exchanges fluids between the mobile fractures and immobile rock matrix in naturally fractured reservoirs. The current state of the art of modelling SI involves the use of quasi-analytic solutions for symmetric imbibition along a 1D axis. Unlike contemporary simulators which use first order transfer functions...
Fluid-fluid immiscible displacement in fractured media plays an important role in various subsurface processes, including enhanced oil recovery and geological carbon sequestration. The displacement patterns range from viscous to capillary fingering to compact displacement owing to the competition between capillary and viscous forces. Although has been profoundly studied for porous media, the...
Vugs and fractures have significant impacts on the fluid flow paths through fractured and vuggy porous media. On the other hand, the presence of vugs and fractures also can significantly affect the geo-mechanical behavior of the porous media. How to quantify and analysis the accurate effects of the vugs and fractures on the hydro-mechanical behavior of the media is still an opening and...
Two-phase coupling free flow and porous flow are encountered in a wide range of environmental and engineering applications, and several kinds of numerical models with different interface conditions have been built for it. Capillary pressure curve was usually considered in most models using J-function, but the threshold pressure was usually ignored because it’s relatively small compared with...
Permeable and hyperporous surfaces are common in natural systems, such as fractured rocks. Flow and transport above such surfaces is significantly affected by the surface properties, e.g., matrix porosity and permeability. However, the relationship between such properties and macroscopic solute transport is largely unknown. We focus on mass transport in a two-dimensional fracture with...
The importance of fracture flow and matrix diffusion was investigated in two different fractured geologies: limestone and clayey till. Natural- and forced-gradient tracer tests were designed and conducted to analyze the transport behavior in the two fractured media and to investigate the required model complexity for the simulation of solute transport. A discrete-fracture model was employed to...
To estimate the performance and sustainability of enhanced geothermal systems (EGS), an accurate characterization of the fractures created by hydraulic stimulation is crucial. It is common practice to perform tracer tests to obtain relevant reservoir parameters such as reservoir impedance, potential production flow rate as well as fracture surface area [Shook, 2017]. The fracture surface area...
The accurate determination of formation heating area is the basis for productivity evaluation and dynamic prediction of cyclic steam stimulation in heavy oil reservoirs. In early research, formation heating area is considered to be an isothermal region and its temperature has the value of injected steam temperature. In fact, as to our knowledge, the temperature of heating area gradually...
Coupling of geochemical reactions with hydrological and mechanical processes in nano-porous carbonate rocks can lead to complex behaviors involving the change of pore topology (e.g., precipitation, dissolution, compaction) and mineralogy. Fluid-rock interactions also change hydrological, mechanical, and geophysical properties (e.g., permeability, rock strength, elastic, acoustic velocity)...
Abstract: With the increasing demand of oil and gas resource in the world, the development of deep reservoir has become an inevitable trend. In order to investigate the coupled effects of rock elasto-plastic deformation, fluid flow and heat transfer in the process of hydraulic fracturing of deep reservoir, the mathematical model of hydraulic fracture propagation is established based on...
Fractured vuggy carbonate reservoir is of diverse types, large scale and complex spatial structure. Traditional numerical simulation software is hard to describe, which brings great difficulties to production prediction. The project team to establish a simulation method of multiscale numerical hole, slot and hole unified oil gas water three-phase flow equations and medium flow solid coupling...