Multiphase flow in porous media is important in many natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Although it is well known that the wetting properties of porous media can vary drastically depending on the type of media and pore fluids, certain aspects of wettability control on multiphase flow continue to...
Reactive transport modelling at the pore scale explores the spatial-temporal changes in the pore network geometry, the flow field and water composition at sub-centimetre scale. It requires a true representation of fluid-mineral boundaries and their role as zones of fluid-mineral reactions, spatially explicit mass transport and a set of chemical equations to calculate the aqueous speciation and...
Dissolution phenomena in porous media play an important role in the transport of sequestered CO2. Petrophysical properties can be dramatically altered by resulting pore structural changes, including the formation of high conductivity channels, known as “wormholes”. As it is difficult to forecast the emergence of wormholes based on experimental information, it is of vital importance to be able...
Hydraulic fracturing is one of primary engineering techniques to improve well productivity especially for unconventional reservoirs. Generally, there are two kinds of numerical models for hydraulic fracture simulation, continuum-based models and discontinuum-based models. In continuum-based models governing equations based on continuum theory are solved with single planar fracture assumption....
Multiphase multispecies transport is an essential field of studies for a wide range of engineering applications including acid gas treatment, waste water management and bubble column reactor. In particular, pore-scale investigations of subsurface processes have recently attracted a lot of attention in many domains such as oil and gas production, CO2 storage and contaminant hydrology. On the...