From Images to Rock Properties
In the Oil and Gas industry, digital images of rock samples are being collected and utilized for reservoir formation characterization more frequently than ever. This is in part due to the fact that imaging tools such as X-ray CT scanners and SEM’s have become more prevalent, and also due to the challenges and time-consuming processes in traditional core analysis...
Three-dimensional (3D) analyses of the pore structure of building materials are becoming progressively more important in recent years in order to get more accurate interpretations and simulations of moisture and heat transfer properties. These characteristics are a major determinant for the durability and sustainability of structures as well as for the health and comfort of the building...
Calcium carbonate (CaCO3) precipitation is a frequently-occurring natural subsurface process, in which supersaturated CaCO3 in brine can precipitate in subsurface environments. This phenomenon can naturally occur as part of diagenesis of rocks and can also be utilized for soil improvement. This study explored abiotic carbonate precipitation in coarse sands using X-ray microtomography (X-ray...
In this presentation, we explore applications of the maximal inscribed sphere (MIS) map to characterize porous media and show connections with other laboratory measurements. Three-dimensional maps can be computed from x-ray micro-tomography images of porous rocks and have been commonly used to simulate mercury injection capillary pressure (MICP) curves. We present additional applications of...