Characterizing dissolved chemical migration in porous media through the Advection Dispersion Equation requires the knowledge of the fluid velocity field and of dispersivity values associated with diverse geomaterials which can make up the internal architecture of the system. Several studies have focused on the assessment of the impact on solute concentration dynamics of an incomplete knowledge...
Urbanization in coastal areas has been on an increasing trend during the last century. In some coastal regions, groundwater is one of the major source of potable water for the population, the industry, and the agriculture with an average demand of 30 m3/s [1,2]. Sea-level rise has been recorded to be approximately 40 mm/yr [3] with the potential consequence to favor significant intrusion of...
Model improvement by conditioning on data collected at multiple scales remains a challenge in complex settings. We employ an information-theoretic approach that allows for seamless integration of multi-resolution data into multi-scale simulations to upscale conductivity of heterogeneous formations. Fine-scale information is summarized into a coarse scale representation by setting a...
The highly compressible nature of some aquitards leads to nonlinear consolidation where the groundwater flow parameters are stress-dependent. The case is further complicated by the heterogeneity of the hydrogeologic and geotechnical properties of the aquitards. To adequately model land subsidence in these systems, we develop a modeling approach to couple a nonlinear 1-D groundwater flow and...
Chemical flooding is one of the most promising EOR technique in both laboratory research and field trials. It has been applied in conglomerate reservoir as well as sandstone reservoir. To full understand the displacement mechanisms of chemical flooding in reservoirs with different lithology, it is essential to recognize the residual oil displacement in pore scale.
We selected three cores with...
Fractures are ubiquitous in the subsurface, and provide primary pathways for fluids traveling underground. The roughness and wettability of the fractures in the subsurface cause a major impact on multiphase flow behavior. Nevertheless, published analytical solutions for multiphase flow properties of fractures fail to account for the complexity of the surface mineralogy heterogeneity and its...
The seismoelectric and self-potential methods are showing promises to characterize both the vadose zone of the Earth, hydrocarbon reservoirs and CO2 sequestration. That said, the dependence of a key parameter, the streaming potential coupling coefficient, with the saturation remains highly debated. We explore here the relationship between the streaming potential coupling coefficient, the...
We consider log hydraulic conductivity (Y) as uncertain and predict steady-state groundwater head (h) through three different, independent approaches. The first two of them are based on the ensemble Kalman filter (EnKF), their difference being in the way statistical moments (SM) of state variables and parameters are estimated numerically before the Kalman filter is applied. Whereas in the...
A numeric model of non-reactive flow through naturally stratified sandstone samples is presented. This work is based on laboratory experiments in which it was established that solute migration in saturated stratified porous media was dominated by stratification. The experiment results strongly suggest that the effect of the stratification is dominant for flow parallel to the lamination in...
In the middle-high permeability sandstone reservoir with strong heterogeneity and low permeability reservoir, invalid recycling of the injected water is formed along the natural high permeability belt and interwell fracture at high water cut stage, which results in reduction of reservoir recovery degree. According to the field tests, the reservoir recovery degree can be improved by coupling...