A recent experimental study [Herring et al., 2016] shows the potential of enhancing residual trapping of supercritical CO2 (scCO2) via cyclic injections. Two competing mechanisms were identified that impact residual scCO2 trapping: (1) the wettability of solid surfaces is altered due to direct contact with scCO2; (2) different capillary pressure results in different initial states of scCO2...
Investigating the mechanisms that govern flow of fluids at the pore-scale are the cornerstone of understanding multiphase flow in porous media for a wide range of applications, including hydrocarbon recovery, CO2 sequestration and contaminant hydrology.
Microfluidic devices, coupled with visualization techniques allow us to study pore-scale processes [1, 2]. Glass substrates are often...
Over the past decade, laboratory based X-ray computed micro-tomography (micro-CT) has given unique insights in the internal structure of complex porous materials in a broad range of applications, improving the understanding of pore scale processes and providing vital information for pore scale modelling. The non-destructive nature of micro-CT imaging, combined with dedicated X-ray transparent...
Fuel Cell is considered one of the promising technology which can be utilized in many different applications, such as stationary, transportation, and portable usage. One of fuel cell efficiency limitation is water flooding at the cathode gas diffusion layer (GDL) at high current densities or low operating temperatures. There are many different experimental and theoretical studies regarding...
Pore-network modelling is an efficient method to simulate pore-scale multi-phase flow. The pore-network consists of a collection of idealized interconnected discrete network elements – pore nodes and pore throats. Capillary-dominated flow is modelled based on invasion-percolation rules. Although pore-network modelling is much less resource-demanding than direct simulation approaches, current...
While quasi-static pore network models (PNM) have been used to investigate the relative permeability (Kr) behaviour of reservoir rocks since the seminal work by Bakke and Øren (1997), the capacity of these models to capture the appropriate physics and predict experimental data remains contentious (Sorbie and Skauge, 2011; Bondino et al., 2012; Berg et al., 2016). It is generally accepted that...
The capillary entry pressure (Pce) and corresponding pore throat size control the thickness of an oil or gas column that may be sealed beneath a mudrock. Mudrock seals typically have nanometer-scale pore throats, and the Pce often exceeds the minimum horizontal effective stress in these rocks. Mudrock seals can fail through fracturing either by buildup of fluid pressure or during faulting or...
We study immiscible fluid-fluid displacement in rough-walled fractures with a focus on the combined effect of wettability, the viscous contrast between the two fluids, and fracture surface topography on drainage patterns and interface growth. We have developed a model to simulate the dynamic displacement of one fluid by another immiscible one in a rough geological fracture; the model takes...