Wettability is a paramount factor in multiphase flow through porous media. The preference of the rock mineral surface to oil or brine determines fundamental flow functions in reservoir engineering like irreducible saturations, critical saturations, relative permeability and capillary pressure. Its implications affect all processes in oil and gas recovery, from primary production,...
Droplet impact on porous surfaces is a phenomenon of interest in several applications and is studied here in the context of wind-driven rain impacting building facades. The aim of the this work is understanding and controlling the droplet dynamics and penetration into the porous surface. Despite of the wide applications of this phenomenon, the studies in this field are mostly limited to the...
An interface of phase transition is a macroscopic surface that separates the domain occupied by a single-phase gas or liquid from another domain occupied by two-phase gas-liquid mixture. In classical fluid dynamics an example of such a surface is the boundary of a cloud or a spray in the air. In porous media, this corresponds to the injection of miscible gas in an oil reservoir, which creates...
• Theoretical part of this work has just been accepted by Physical Review Letters
Long-term storage is necessary in order for CO2 geological sequestration in to be feasible. Leakage of CO2 by buoyant forces may occur if the trapping of CO2 in porous media is not stable with formation of large CO2 clusters. Ostwald ripening is a well-known phenomenon in two-phase mixtures that may affect...
In this work, it is shown that the one-domain approach (Goyeau et al, 2003) can be used to model precisely the average fluid velocity in a channel partially filled with a porous medium. This conclusion is drawn from the comparison of the averages obtained from the solution of the effective transport equations, with position dependent coefficients, and the ones resulting by direct integration...
Phase separation and the vapor free delivery of liquids is a challenge in a compensated gravity environment. Porous materials are used for liquid and vapor phase separation. They enable the transport (wicking) of liquid and provide a barrier against penetrating gas (bubble point). The wicking process is the imbibition of liquid into porous structures due to capillary forces [1].
To predict...
Wicking as imbibitional flow of a liquid driven by capillary pressure has been an important topic in different areas from simple applications like air refreshers and lightening torches to high-tech one such as Propellant Management Devices (PMD)[1, 2]. In this research, wicking of a liquid into porous wicks made parallel fibers is investigated. In the first step, we developed a model for...
The porous pore doublet model that was published in 2008 [1] is presented and discussed. The background to the model is that fabrics used for fiber reinforced composite manufacturing often consist of fibers gathered in bundles.Thus, during manufacturing, the liquid resin impregnates a multiscale porous medium and there is a transport between pores of different scales driven by an applied...