Propagation of proton fronts exerts a fundamental control on geochemical processes and contaminant transport in subsurface systems (Muniruzzaman & Rolle, 2015). Protons are of key importance in pore water solutions since they affect the sorption behavior of charged contaminants by setting the surface charge at the mineral-liquid interface. Therefore, it is of primary importance to enhance our...
The presence of contaminants in low permeability zones of aquifer can represent a real limitation for a complete and effective groundwater restoration. When dissolved plume encounter low permeability layers, concentration gradient between low and high-permeability zones determines storage of dissolved pollutants into the lower permeability layers by molecular diffusion (Forward-Diffusion)....
Colloidal facilitated transport of contaminants is a major concern for transport of low solubility chemicals in ground water flows. Compared with themselves alone, contaminants travel much further after adsorbing to natural colloidal particles, as far as kilometers over years. Therefore, understanding the transport behavior of colloids would provide insightful knowledge for environmental...
The traditional fixed-bed reactor design is ususally based on empirical correlations of plug flow pattern. This empirical method is usually not suitable for the low tube-to-particle diameter ratios (N=D/d< 4) where the local phenomena of channeling near the wall and the backflow in the bed are dominant. The recent “solid particle” method1 is too complicated for mesh generation, especially for...
Geometrical straining of particles in porous media is of critical importance in a broad range of natural and industrial settings, such as the contaminants transport in aquifers and the permeability decline due to pore plugging in oil reservoirs. Despite its importance, relatively few studies have been performed on particle straining under fluid-driven flows in porous media. Pore-network...