For a non-isothermal reactive flow process, effective properties such as permeability and heat conductivity change as the underlying pore structure evolves. We investigate changes of the effective properties for a two-dimensional periodic porous medium as the grain geometry changes. We consider specific grain shapes and study the evolution by solving the cell problems numerically for an...
Reactive flows and transport models through the porous medium are important for a wide range of scientific and industrial processes. Examples in this sense are groundwater remediation, oil recovery from reservoirs, CO2 sequestration etc. The main goal of the research is to develop mathematical models that describe such processes at the pore scale and to derive effective models at the macro...
Motivated by geothermal energy storage in the subsurface, we undertake a formal derivation of a linear poro-thermo-elastic system within the quasi-static framework. This derivation is based upon the well known derivation of the quasi-static poroelastic equations (also known as the Biot consolidation model) from the micro structure, except that we now include energy conservation equations in...
Two-phase flow problems and reactive flow with changing pore geometry both include a free boundary at the pore scale. Chemical reactions as mineral precipitation and dissolution can alter the pore structure; hence the fluid-grain interface evolves following the reaction rates. The presence of two immiscible fluids introduces an evolving fluid-fluid interface depending on the flow itself and...