Solute transport in porous media is important for several industrial applications, i.e.: hydrology, building stone performance and waste management. Spreading and mixing during solute transport is significantly impacted by the pore scale heterogeneity found in natural porous media, which complicates upscaling (Dentz et al., 2011). Therefore, simulations and experiments which investigate the...
We consider the problem of advection, matrix-diffusion and bimolecular reactions in fracture-matrix systems, with two example applications: (i) Weathering reactions in fractured bedrock and (ii) in-situ chemical oxidation (ISCO) for remediation of fractured rock. In both cases, a reagent (a weathering agent such as H+ or dissolved oxygen, or permanganate in the case of ISCO) are supplied...
We study the Lagrangian dynamics of steady three-dimensional (3D) Stokes flow over granular media consisting of simple cubic (SC) and body-centered cubic (BCC) lattices of closed-packed spheres, and uncover the mechanisms governing chaotic fluid advection. Due to the cusp-shaped sphere contacts, the topology of the skin friction field is fundamentally different from that of continuous...
Few current bioreactive transport solvers currently provide a comprehensive mechanistic description of biogeochemical cycles and allow easy integration of all the involved processes, including flow in variably saturated media, solute transport and kinetic/equilibrium biochemical reactions. The parameterization of these processes is particularly challenging since our knowledge of model...
Semi-Analytical Particle Tracking Scheme For Advective/Diffusive Transport in Porous Media
The particle tracking scheme of David W. Pollock [Ground Water 26(6), 1988] provides a computationally efficient and mass-conservative method for Lagrangian transport in the absence of diffusion. In this work, a generalization of Pollock's scheme that allows for the inclusion of diffusion is...
Residual trapping is one of the key trapping mechanisms for CO2 geological storage, yet difficult to determine in-situ. The present study addressed determination of residual trapping over the entire range of scales from pore to core to field scale, based on data from Heletz, Israel [1] pilot CO2 injection site. During 2016-2017 two dedicated push-pull experiments have been carried out at the...
Reactive transport in river corridors can be greatly complicated by fluctuations in the boundaries, which may cause changes from gaining to losing over time. The seasonal influxes of water cause wetting and drying of soils near the river, rainfall causes distributed periodic inputs to the surface, and chemical and physical heterogeneity affect the possible reaction sites. The combination of...
The recent developments of microfluidic is offering a new and efficient tool to visualize transport processes of bacterial fluids from microscopic to macroscopic scales and assess the influence of well controlled environments. We explored a situation where the motility and pore geometry are the dominant ingredients influencing the hydrodynamic dispersion of a bacterial fluid.
To this aim,...