Thermal conduction in natural porous media has been deeply paid attention in science and engineering, for example, exploiting and utilizing the geothermal energy, determining the heat flow in hydrothermal systems, obtaining the information about the past climate, modelling the hydrocarbon formation processes and investigating the potential nuclear wastes, etc. The thermal conductivity plays an...
Building a three-dimensional (3D) porous medium is the basis of carrying out the numerical simulation of the fluid flow. To date, many techniques of constructing porous media have been proposed by scholars. Among them, the multiple-point statistics (MPS) method has a unique merit of reconstructing 3D digital rock because it can reproduce long-range connectivity of pore space. The Single Normal...
Earthquake mechanics relies on the ability to simulate frictional failure of faults. One of the dominant characteristics of seismic events is unstable frictional failure, that is, the occurrence of fast runaway slip.
In their seminar work, Dieterich [1] and Ruina [2] proposed a mathematical description of friction, the rate and state friction law, which is capable of reproducing stick-slip...
In order to understand the pore structures and fluid distribution in the oil reservoir rock which is a kind of porous media, X-ray computed tomography which can yield high-resolution, three-dimensional representations of pore space and fluid distribution within porous materials is applied to obtain data on structure, porosity, permeability, and other rock properties. Segmentation method of CT...
Compositional two-phase fluid flow in porous media, especially on geometrically complex domains, require high fidelity geometric discretization. Moreover, since multi-component multi-phase flow and transport in porous media usually come with strong nonlinearity and stiffness in multiple spatial and temporal scales, it is necessary to deploy a multi-scale approach that is inevitably...
Water injection has been potentially considered as an efficient method for supporting the pressure in most oil reservoirs. Novel EOR techniques such as smart water flooding have gained more attention referring to both the recent research activities and the falling of oil price. In spite of many attempts on acquiring the main responsible mechanisms of smart water flooding in many individual...
The Mishrif Formation in the Hafaya Oilfield is mainly characterized by porous carbonate reservoir with large marine biology, different sediments and complex diagenesis. Reservoir in this area has diverse pore types, poor correlation between porosity and permeability, poor well logging response and reservoir evaluation is difficult. The diagenetic patterns of different microfacies have been...
The reservoir heterogeneity of the restricted platform in the Mishrif formation of Iraq HF oil field is strong, different microfacies experience different diagenesis and pore evolution process, and the seepage characteristics are different. Therefore, to clarify the differential diagenesis and pore evolution mechanism is the basis of improving development effect. Based on core observation,...
A fundamental understanding of multiphase flows in porous media is relevant to enhanced oil recovery as well as to the process of CO2 sequestration in hydrocarbon reservoirs and saline aquifers. Recently, we quantified two-phase flow mechanisms in micromodels that represent the pore networks of natural complex porous media [1]. Using micro-Particle Image Velocimetry (micro-PIV), we are able to...
In this study, a discrete pore-scale model is developed to predict the drying characteristics of an aggregate composed of primary particles with a multimodal size distribution. The solid phase is represented by a cubic particle packing and the complementary pore space is constructed by using the pore-scale finite volume approach. The vapor forming as a result of (slow) evaporation escapes...
The objective of this paper is experimental measurement of CO2 diffusion coefficient in different nanofluids including (SiO2), aluminum oxide (Al2O3) and titanium oxide (TiO2) nanofluids. Nanofluids in concentrations of 0.05, 0.1 and 0.2 wt% were used in experiments. Different factors such as temperature, weight percentage of nanoparticles, as well as the effect of particle size were...
Although modeling transfers through naturally fractured media has been the subject of extensive investigation since the 1960's (Bear et al. 1993, Berkowitz 2002, Adler et al. 2012), it remains a challenging field of research. Applications range between management of polluted groundwater, nuclear waste storage (Fourno et al. 2004), CO2 sequestration (Verscheure et al., 2012), oil field...
Cold asphalt mixture (CAM) is a road materials obtained by mixing bitumen emulsion, aggregate, water and often cement at ambient temperature. When using CAM, aggregates and binder do not need to be heated during the mixing operation, which brings social, economic and environmental benefits compared to other paving materials, such as hot mix asphalt (HMA).
Like other types of asphalt...
In this study, we have developed a novel microfluidic high-pressure high-temperature vessel to house geomaterial (natural rock or mineral chips) micromodel specimens. Realistic fracture patterns were laser-scribed on the organic-rich shales of Draupne Formation, the primary caprock for the Smeaheia CO2 storage site (the full-scale CCS project) in Norway. The primary research objective was to...
The Bruggeman model is often used to calculate effective properties of batteries. Yet, the theory relies on a simplified representation of the pore-scale structure. Access to detailed topological information of battery electrodes by means of Tomography and Scanning Electron Microscope images provides new opportunities to more accurately estimate effective parameters. We propose a computational...
Batteries and pumped hydropower plants store solar energy in the form of chemical and mechanical energy. Another attractive option is storing energy in the form of heat. Probably the best-know example are the so-called heat pads that are used in outdoor activities. We investigate how to use sugar alcohols as heat batteries. Sugar alcohols are an abundant product of the food industry and they...
Liquid water is produced during hydrogen-oxygen reactions in proton exchange membrane fuel cells, which operate at temperatures below 100 C. Proper water management is important to achieve high performance and durability. The behavior of liquid water percolating through the catalyst layer of PEM fuel cells is not understood, and has not be experimentally characterized. This is in part due to...
The use of gas-solid reactions for thermochemical energy storage has been widely discussed in literature. Still, the question of handling a reacting solid on a technically relevant scale is not solved yet: structural changes within the porous solid media need to be considered when designing high-power storage reactors for commercial applications.
In an experimental study, we have successfully...
Micromodels have been artificially manufactured with microfluidic networks of pores and throats, thus emulating the pore-scale geometries in porous media, for example, oil reservoir rocks. Micromodels manufactured in Si or glass have been used to visualize fluid flows in waterflooding experiments and two phase flow experiments, but their geometries have been limited to 2D pore network...
Across a wide range of flows, to date the Spatial Markov Model, a member of the continuous time random walk family of models, has had great success in predicting mean transport behavior - e.g. breakthrough curves and the temporal scaling of flow aligned spatial moments, but applications to modeling mixing and reactions have been more limited. This is because these are nonlinear in nature,...
Methane hydrate is a non-stoichiometric crystalline structure in which water molecules form hydrogen-bonded cages with methane molecules inside. Abundant methane hydrate resources are present on Earth, especially in various mineral porous media (e.g., permafrost and sea-floor).[1] Methane hydrate is important for many applications in the field of energy and environmental science.[2,3]...
In the framework of underground flow simulations in fractured media, modeled by Discrete Fracture Networks (DFNs), we focus on the issue of the non-deterministic description of the network. For performing numerical simulations, fractures are indeed typically sampled from probabilistic distributions for both hydro-geological properties (fracture transmissivity) and geometrical features...
The physical processes which determine the sessile droplet / porous paper interactions have been the subject of many studies in the last decades. Both theoretical understanding and sustainable industrial applications are the driving forces for these studies. Nowadays, inkjet is one of the main printing technologies, offering the flexibility of digital printing at a breakthrough cost price,...
Thin porous layers are seen in many applications such as hydrogen fuel cells and hygiene products, in which air-water flow is of great interest. Navier-Stokes-based direct simulations are very computationally expensive, and even prohibitive for low capillary number flow such as water flooding in hydrogen fuel cells. Alternatively, the pore-network modeling needs much less computational...
Data has been described as the world’s new oil, as a resource with immense potential to inform and transform daily life as well as science and engineering. The volume of newly generated scientific data is projected to exceed 40,000 exabytes by 2020. At present, however, only 20% of the world’s data are preserved online. Field, lab, and computing datasets all contribute to an improved...
Evaporation from porous media is of great interest to many research and engineering fields, such as recovery of volatile hydrocarbons from underground oil reservoirs, remediation of contaminant soils by vapor extraction, and water management in gas diffusion layers (GLDs) of proton exchange membrane fuel cells (PEMFCs). During runnig of PEMFCs, produced water may condense and fill open pores...
Multiphase immiscible displacement in porous media is a process occurring in different applications, such as CO2 sequestration in saline aquifers and oil/gas production from hydrocarbon reservoirs. Capillary pressure, Pc, is one of the variables that controls flow behavior and displacement patterns that ultimately determines residual saturation. Capillary pressure is a function of...
Motivated by the process of convective mixing in porous media, here we study the pattern-formation and coarsening dynamics arising from dissolution of CO2 in a single-aqueous phase during three-dimensional (3D) Rayleigh-Benard-Darcy convection. Our focus is on comparing the pattern-formation aspects of solutal convection between conditions of constant concentration and constant flux...
Pressure-induced temperature transient analysis has emerged recently with the downhole temperature monitoring techniques to characterize the reservoir. In this work, we develop analytical approaches and solutions to model the temperature signals associated with variable rate production of slightly compressible fluid and apply it to several field temperature measurements to characterize the...
Acid fracturing is a stimulation technique that has been widely used in developing fractured-vuggy carbonate reservoirs. Wormholes and hydraulic fractures, which are created by this technique, form the main channels of the fluid flowing into the wellbore. Complex seepage systems near the wellbore pose significant challenges to study the transport process in these reservoirs. Based on the...
For further research on the effect of heavy oil viscosity on the fracture geometry, this paper establishes heavy oil fracturing model and conventional fracturing model based on thermal-hydraulic-mechanical (THM) coupled theory, Walther viscosity model and K-D-R temperature model. We take viscosity and density within heavy oil fracturing model as functions of pressure and temperature, while...
Gas transport in unsaturated fractured media plays an important role in applications such as shallow CO2 leakage from carbon sequestration sites, methane leaks from oil and gas operations, and remediation of volatile contaminant plumes. Driven primarily by barometric pumping, the time scale of relevant gas transport can vary from months or years to the order of days depending on a variety of...
An ultra-tight sealing caprock is essential for safe storage of CO2 in deep geological basins. One of the basic requirements of this shale sealing is to ensure it is free of faults/fractures or other high permeable zones that may lead to unintended leakage of CO2 from its storage reservoir to above zones. Sealing capability of caprock is typically characterized by permeability measurement of a...
In order to quantitatively describe the influence of the surface roughness of sandstone fracture on its seepage law, the three - dimensional fractal dimension D and three - dimensional surface height deviation Sa are used to characterize the surface roughness of sandstone fracture. Through the seepage test of sandstone specimen with different fracture surface roughness and different crack...
In this presentation, we report a novel experimental approach to investigate the compression-dependent Darcy permeability of soft porous media. Especially, we are proposing new correlations that describe the change of the permeability of random fibrous porous media as a function of its compression. A special device was developed that consisted of a rectangular flow channel with adjustable gap...
The three-dimensional version of the Virtual Element Method is a field under
great development, both from the theoretical point of view [1] and the im-
plementation aspects [2]. The simulation of the flow inside a poro-fractured
medium has been recently tackled using the Virtual Element Method in the
context of Discrete Fracture Networks [3–6]. Here we consider the threatment
of non...
In-depth understanding of fluid and solute transport through complex porous media is of significant importance in various engineering and scientific applications. Large-scale behaviour of fluid and solute transport are determined by pore-scale features. Therefore, it is crucial to determine pore-scale transport properties and then upscale these properties to large scales. Numerically...
Oil and water incompressible flow is the main mechanics for water flooding oil production. There many numerical methods for this two phases flows, like full implicit, implicit pressure and explicit saturation and implicit pressure and implicit saturation and so on. The relative permeability of water and oil are not linear function of water saturation and so is the capillarity pressure. How to...
Wettability is known to have an enormous impact on oil recovery in the petroleum industry and efforts are being made to assess the role of such conditions. This work creatively tailors the microchip surface wetting property by using rock-forming mineral coatings. The mineral surfaces are created in microchips by using the novel layer-by-layer (LbL) assembly technology.[1] The formed mineral...
Cohesive particle swarms have been shown experimentally to exhibit enhanced sedimentation in fractures for an optimal range of fracture apertures. In this optimal range, swarms travel farther and faster than a disperse (particulate) solution. This study aims to uncover the physics underlying enhanced sedimentation. Swarm behavior at low Reynolds number in a quiescent unbounded fluid and...
Coal is a low permeability solid medium with pores and fracture structures., pore penetration affects the coal seam permeability. In order to damage the porous structure of coal to achieve the purpose of increasing penetration, X-ray diffraction (XRD) and fourier transform infrared spectroscopy (FTIR) were used to study the changes of mineral composition, mineral crystal particle size,...
The characteristics of sandstone on the pore type, pore size distribution, pore connectivity, porosity and permeability with temperature were analyzed by scanning electron microscope, nuclear magnetic resonance and low pressure nitrogen adsorption. The pore size, pore size distribution, pore connectivity, porosity and permeability of sandstone in 25-800℃ range were analyzed. The SEM results...
The reserves of "three low" reservoirs in E1f2 layer of Jiangsu Oilfield are up to 63%, while the physical properties of the target block vary greatly, the microscopic pore structure is complex, and the occurrence state of oil and water is unknown. In view of the above problems, this paper starts from two aspects of reservoir understanding and percolation mechanism. Using the experimental...
The relative permeability behaviours of gas and water in coal are primary factors in the productivity of a coal seam gas reservoir, and it is dependent on many factors including fluid saturations and pressure, cleat geometry and network, and wettability (surface chemistry). In this study, we performed steady-state relative permeability measurements using X-ray CT scanner on packed beds of coal...
Gravity-driven water flow into an initially dry porous medium can lead to a non-monotonic behavior. Instead of a uniform flow front, water infiltrates in finger patterns, which has been observed experimentally [1, 3, 4]. Fingering effect cannot be described by the Richards equation or standard two-phase flow system unless some additional terms are incorporated. One of the most effective...
The present work proposes the use of General-Purpose Graphics Processing Units (GP-GPUs) to solve flow problems in large scale Discrete Fracture Networks (DFNs). Discrete fracture networks are randomly generated sets of planar polygons in the three dimensional space resembling the fractures in the subsoil. Recently a minimization approach was developed to tackle the issue of effective flow...
Gas transport in an unconventional reservoir is a complicated process that is highly subject to nonlinear multi-physics phenomena, such as gas molecule’s sorption and slippage effects especially in tiny pores. The quantity of the adsorbed gas release and gas permeability changes due to the complex gas transport phenomena can significantly affect the entire production in unconventional...
In the development of multi-layer reservoirs, the phenomenon of interlayer interference definitely exists. With the process of water injection and oil production, the interlayer interference has become increasingly seriously, which causes huge damage to the formation. The physical experiment of visualized multi-tube water flooding and the actual oil field production data were used to establish...
In view of the poor physical property of reservoir, the complicated microscopic pore structures and the difficulty of effective development in Fuyu Oilfield of Qingxin Oilfield, by comprehensively using constant pressure mercury intrusion, nuclear magnetic resonance (NMR) and physical simulation experiment system of oil-water displacement, the microscopic pore structure characteristics and...
A general framework for modelling hydromechanically coupled fractured porous media is implemented utilising the dual-continuum concept. Modelling fractured systems explicitly can be impractical at the field scale due to the size of the computational problem. Additionally, fracture properties are often not known unless directly accessed. The dual-continuum approach offers a practical method of...
Due to the differences in physical properties between clay mineral and sand matrix, clay content has always been an important part of reservoir evaluation. Clay content can be used to calculate effective porosity, saturation and permeability in conventional reservoirs and provide available information for brittleness evaluation and hydraulic fracturing design in tight oil reservoirs or shale...
One of the main objectives of oil reservoir geological modeling is to predict the spatial distribution of petrophysical properties from a few poorly distributed data. To achieve this goal, it is usually necessary to establish some dependence model so that it is possible to predict petrophysical properties of interest through its relationship with seismic attributes that are more densely...
For investigating the recovery mechanism of countercurrent imbibition in the process of hydraulic fracturing and shut in well in cyclic water injection, experiment system of countercurrent imbibition in tight oil reservoir and experiment method of flow resistance measurement caused by reverse displacement was established by high-pressure physical simulation system for large scale outcrops. Two...
With the development of tight oil reservoirs, various fracture-propagation models have been used to maximize the contact area between fracture network and reservoir matrix. However, the optimal results doesn’t necessarily obtain the maximum economic benefits. Also, many researchers developed reservoir simulators to optimize fracture parameters (e.g., half length, width, direction, et al.)....
Determination and Prediction of VOC Adsorption Performance Data of Activated Carbon Based Filter Media for Indoor Air Purification
*Roman Ligotski (1), Uta Sager (2), Christof Asbach (2), Frank Schmidt (1)
1 Nanoparticle Process Technology, Department of Mechanical and Process Engineering, University of...
From MRI visualization of internal liquid distribution in time during convective (given air flux) drying of uniform bead packings with pore size from micro- to nano-meter, we show that, at first sight, the standard regimes of drying may be observed in any case: first a constant drying rate regime (CRP) associated with a homogeneous desaturation, followed by a falling rate period (FRP)...
Many lacustrine organic-rich shales formations, deposited in saline basins or the salification stage of freshwater basins, are interbedded with carbonates, sulfates and chlorates minerals. Dissolution and precipitation of salt always happen during extraction of hydrocarbons from lacustrine shale reservoirs. The dissolution of sulfates and chlorates minerals causes reservoir deformation, while...
Tissue engineering consists in combining an absorbable scaffold with cells of interest and the proper culture medium in order to produce a tissue for medical purpose. In particular, bone tissue engineering steps in as a promising alternative to the current reference treatments auto and allografts [1].
The objective is two-fold: first, to understand how fluid flow in the porous scaffold of...
Fiber-based materials have an enormous industrial impact. This can be seen in the paper, apparel, and especially in filters, whose market is dominated by automotive applications. In all of these traditional materials cases, as well as emerging advanced materials, such as carbon fiber reinforced polymers (CFRP), the microstructure of the material profoundly impacts the macroscopic properties....
Leakage along wellbores is of concern for a variety of applications, including sub-surface fluid storage facilities, geothermal wells, and CO2 storage wells. We have investigated whether corroded casing is permeable to gas and can serve as a leakage pathway along the wellbore. Steel plates were corroded in corrosion reactor and sandwiched in a cylindrical...
Hydroxyapatite (HA) is the main inorganic component of human bone and therefore HA ceramics are widely used as artificial replacements for natural biomaterials, both for implant applications and bone tissue engineering scaffolds [1-3]. In order to ensure not only biocompatibility (bioactivity), but also osteoconductive and osteoinductive properties enabling bone cell ingrowth, as well as...
Hydrogels are the specific group of hydrophilic porous materials, being composed of variety of natural, synthetic polymers or their combinations. Their characteristic feature is the possibility to swell in aqueous solutions. Moreover, the relatively high porosity and water content, softness, strength and the ability of various substances to diffuse through the pores of their cross-linked...
The coupling between subsurface flow and geomechanical deformation is critical in the assessment of the environmental impacts of groundwater use, underground liquid waste disposal, geologic storage of carbon dioxide, and exploitation of shale gas reserves. In particular, seismicity induced by fluid injection and withdrawal has emerged as a central element of the scientific discussion around...
The use of petrophysical data and seismic attributes in the oil industry have allowed the characterization of the reservoirs due to their value as predictive tools, for the evaluation of reservoir information is needed the petrophysical parameters such as porosity, permeability, saturation, etc. And the seismic information can infer the physical properties of the rocks on the place (Li & Zhao,...
This study analysis micro production characteristic of tight oil reservoir cores, using NMR technology with core displacement test. Research show that: After water flooding for tight oil reservoir of Erdos basin: most of oil in micron pores and a majority of oil in sub micron had be driven out, and the lower permeability reservoir had, the higher recovery percent of reserves R sub micron pores...
The micro pore structure characteristics of the tight carbonate and sandstone reservoirs in Central Sichuan Basin were systematically studied, by using constant velocity mercury injection, high pressure mercury intrusion, specific surface area instrument and CT scanning, etc. the results indicate that under the same permeability, compared with the tight sandstone reservoirs, the tight...
To overcome the limitation of resolution and dimension of a single imaging method, a combination of X-ray computed micro-tomography (X-ray μ-CT) and focused-ion beam-scanning electron microscopy (FIB-SEM) tomography was employed to reconstruct the multi-scale 3D digital cores. First, macro-pore images were collected by X-ray μ-CT, and meso-pore images and micro-pore images were obtained by...
Several unconventional reservoirs have been stimulated using hydraulic fracking to enhance the production. Further, reservoir simulation technology is facing new challenges in providing key information used for long-term strategic decisions.
To understand and optimize shale reservoirs production, one must capture the role of hydraulically induced fractures, natural fractures and their...
Darcy flow in a two dimensional rectangular domain heated at the bottom and cooled at the top with perfectly insulated sidewalls is the topic of interest for this research. For Rayleigh numbers less than the critical value, $Ra_{cr}$, any disturbances will decay to a motionless solution and heat transfer will occur via conduction only. Above $Ra_{cr}$, natural convection develops in the...
Interfacial mass transfer between scCO2water in porous media is a key process for dissolution and mineral trapping of CO2 during geological storage of CO2. Recently, both core- and pore-scale drainage and imbibition experimental studies have shown non-equilibrium dissolution of scCO2 and an extended depletion of residual scCO2 (Chang et. Al. 2016, 2017). For better understanding and...
Fracture permeability that governs fluid flow within fractures is highly sensitive to fracture aperture that is affected by the fluid pressure on the fracture surface and far filed in situ stress. Previous research focused on fracture behavior in poroelastic medium with only stress and pore pressure boundary conditions on fracture surface. A more general solution should take into consideration...
Tight oil reservoirs have got extremely low permeability and porosity, with complex microscopic pore structures and fine pore throats, relatively large force of fluids acting on the rock surface of the reservoir, and uncertain regularities of oil & water distribution. Currently, tight oil reservoirs are mainly developed in the mode of quasi-natural energy exploitation using staged fracturing...
Carbon dioxide geological sequestration is an important technology for mitigating CO2 from being indefinitely emitted to the earth atmosphere. Injecting carbon dioxide, normally in a supercritical state, into carefully selected hydrocarbon or saline formations gives rise to several physical, chemical and thermo-hydro-mechanical processes occurring at the reservoir and the surrounding region....
Complex systems are often described with competing models. Such divergence of interpretation on the system may stem from model fidelity, mathematical simplicity, and more generally, our limited knowledge of the underlying processes. Meanwhile, available but limited observations of system state could further complicate one’s prediction choices. Over the years, data assimilation techniques, such...
Drying is a highly energy intensive unit operation in the process industry. Its high complexity due to the large number of interacting phenomena makes it very difficult to model. Thus far, modelling of drying was done using either continuum methods or pore network models, both of which have some limitations. In this work, the Lattice Boltzmann Method (LBM) is used to simulate the drying in...
Tight oil reservoirs are widely distributed around the world and playing an important role in the energy industry. Multistage hydraulic fracture technology has shown a great success in tapping these reservoirs because it improves fracture conductivity and brings higher oil yields. Nevertheless, enhanced oil production from stimulated tight reservoirs is challenging because of the complex...
In an enhanced geothermal system (EGS), fluid is injected into pre-existing fractures to be heated up and then pumped out for the electricity generation; injected fluid is cold as compared to surrounding bedrock. The rock-fluid temperature difference induces thermal stress along the fracture wall, and the large thermal stress could damage some of the self-propping asperities and result in a...
Accurate prediction of petroleum reservoir production in structurally weak geologic areas such as fractured reservoirs or low-permeability reservoirs requires both mechanical deformation and fluid flow modeling. Even production of reservoirs located in stable environments may also need to be predicted by fluid-solid coupled models in case of injection of water or carbon dioxide. The equations...