Surface-driven flows (also called osmotic flows) are generated at interfaces by various thermodynamic gradients (e.g. electric potential gradient: electro-osmosis, solute concentration gradient: diffusio-osmosis, temperature gradient: thermos-osmosis). They represent powerful tools to manipulate liquids in micro and nanofluidic systems, and play a key role in living systems, in sustainable...
We derive the entropy production for transport of heat and two immiscible fluids in an inelastic porous material. The representative volume element (REV) is described by its mass, energy and entropy, and a Gibbs equation from which we define the temperature, pressure and chemical potentials (T,p, μi) of the REV.
The constitutive equations that follow from the entropy production of the REV...
Transport of water vapor through a membrane with nano- or micropores while being impermeable to liquid water is the basis for many fabrics and materials with widespread use. An application of the concept is membrane distillation (Lawson and Lloyd, 1997), where a temperature difference across the membrane drives transport of heat and mass. The transport is component selective and can purify the...
It has been known for a long time that there are cases where Darcy’s law does not
apply, also for single phase flow with small capillary numbers [1–4]. The flow rate has for
some cases been found to be proportional to the pressure gradient raised to the power
1/n where n 6 = 1. For other cases it has been found to be a threshold pressure, below
which no flow occurs.
Non-equilibrium molecular...
Swelling of clay minerals play an important role in many fields including gas and oil industry and 〖CO〗_2 sequestration. More than 60 percent of sedimentary samples in the US are of different types of mixed layer clays. We used molecular dynamics simulations to investigate the effects of layer charge location, interlayer cations (K^+ and 〖Na〗^+) and their concentration ratio on swelling of...