14–17 May 2018
New Orleans
US/Central timezone

The transport behavior of the hydraulic fracturing fluid in organic-rich nanoporous shale: A generalized lattice Boltzmann method

15 May 2018, 17:15
1h 30m
New Orleans

New Orleans

Poster MS 1.12: Fluids in Nanoporous Media Poster 2

Speaker

Dr Tao Zhang (China University of Petroleum)

Description

During the development of shale gas reservoir, large amount of hydraulic fracturing fluid are forcibly injected into the reservoir to create complex fracture networks. However, field data indicate that only a small fraction of the injected fluid can be recovered during the clean-up period. Except the mostly discussed reasons including capillary force, osmotic-force, and clay hydration, the liquid (fracturing fluid) slip effect in the nanopores of shale matrix might be responsible for this phenomenon as well.
Firstly, the apparent liquid permeability (ALP) model in a single nanopore is established on the basis of Wu’s model (Wettability effect on nanoconfined water flow, PNAS, 2017), and the model considers the wettability and pore size related liquid slip effect. Then, the model is incorporated into the global lattice Boltzmann method (GLBM) to be scaled up into nanoporous shale. Next, we validated the proposed model by simulating liquid flow in a classical case. Finally, the proposed GLBM is employed to simulate threes cases including fracturing fluid flow in a homogeneous shale matrix, a reconstructed shale matrix based on a real SEM image, and a shale matrix in presence of micro-fractures to understand the transport behavior of the fluid in nanopores dominated shale matrix.
The flow capability of fracturing fluid in the organic/hydrophobic nanopores of shale matrix is significantly improved due to the huge wall-fluid effect, especially when the radius of the pore is smaller than 100 nm and the contact angle is higher than 120 degrees. After considering the slip effect, the flow field (magnitudes and preferred pathway) of the shale matrix can be significantly changed, and the velocity magnitudes of the region occupied by the organic matter (OM) can even exceed that of the inorganic matter (IOM), although the pores size in the OM is universally smaller than that in the IOM. When the shale matrix contains micro-fractures, the liquid slip effect still has a great impact on the flow enhancement, contributing a lot for the huge fracturing fluid loss in the field.
The transport behavior of fracturing fluid in nanopores dominated shale matrix is revealed, and the results implicit that, especially in the organic-rich shale gas reservoir, the fracturing fluid can be infiltrated into the ultra-tight shale formation easier than commonly expected during the hydraulic fracturing operation. This work demonstrates a new insight into the problem of huge fluid-loss reported from the field, providing a theoretical support for development of gas-shale reservoirs.

References

[1] Afsharpoor, A., & Javadpour, F. (2016). Liquid slip flow in a network of shale noncircular nanopores. Fuel, 180:580-590. https://doi.org/10.1016/j.fuel.2016.04.078
[2] Anwar, S., & Sukop, M. C. (2009). Regional scale transient groundwater flow modeling using Lattice Boltzmann methods. Computers & Mathematics with Applications, 58(5):1015-1023. https://doi.org/10.1016/j.camwa.2009.02.025
[3] Barrat, J.L., & Bocquet, L. (1999). Large slip effect at a nonwetting fluid-solid interface. Physical Review Letters, 82(23):4671-4674. https://doi.org/10.1103/PhysRevLett.82.4671
[4] Birdsell, D. T., Rajaram, H., Dempsey, D., & Viswanathan H. S. (2015). Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results. Water Resources Research, 51(9):7159-7188. doi:10.1002/2015WR017810
[5] Bohacs, K.M., Passey, Q.R., Rudnicki M., Esch W.L., & Lazar O.R. (2013). The spectrum of fine-grained reservoirs from ‘shale gas’ to ‘shale oil’/tight liquids: essential attributes, key controls, practical characterization. Paper presented at International Petroleum Technology Conference, Beijing, China.
[6] Chalmers, G.R., Bustin, R.M., & Power, I. M. (2012). Characterization of gas shale pore systems by porosimetry, pycnometry, surface area, and field emission scanning electron microscopy/transmission electron microscopy image analyses: Examples from the Barnett, Woodford, Haynesville, Marcellus, and Doig units, AAPG Bull., 96(6), doi:10.1306/10171111052
[7] Chen, J., & Xiao, X. (2014). Evolution of nanoporosity in organic-rich shales during thermal maturation. Fuel, 129(4):173-181. https://doi.org/10.1016/j.fuel.2014.03.058
[8] Chen, L., Fang, W., Kang, Q., Hyman, J. D., Viswanathan, H. S., & Tao, W. Q. (2015a). Generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect. Physical Review E Statistical Nonlinear & Soft Matter Physics, 91(3):033004. doi: 10.1103/PhysRevE.91.033004
[9] Chen, L., He, Y. L., Kang, Q., & Tao, W. (2013). Coupled numerical approach combining finite volume and lattice Boltzmann methods for multi-scale multi-physicochemical processes. Journal of Computational Physics, 255(6):83-105. https://doi.org/10.1016/j.jcp.2013.07.034
[10] Chen, L., Kang, Q., Dai, Z., Viswanathan, H. S., & Tao W. (2015b). Permeability prediction of shale matrix reconstructed using the elementary building block model. Fuel, 160:346-356. https://doi.org/10.1016/j.fuel.2015.07.070
[11] Civan, F. (2010). Effective correlation of apparent gas permeability in tight porous media. Transport in Porous Media, 82(2):375-384. doi: 10.1007/s11242-009-9432-z
[12] Clark, C. E., Horner, R. M., & Harto, C. B., (2013). Life cycle water consumption for shale gas and conventional natural gas. Environmental Science & Technology, 47(20):11829-36. doi: 10.1021/es4013855
[13] Clarkson, R.C., Solano, N., Bustin, R.M., Bustin, A.M.M., Chalmers, G.R.L., He, L.,… A.P., Blach, T.P. (2013). Pore structure characterization of North American shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion, Fuel, 103, 606–616. https://doi.org/10.1016/j.fuel.2012.06.119
[14] Curtis, M.E, Sondergeld, C.H., Ambrose, R.J, Raymond, J., & Rai, C.S (2012). Microstructural investigation of gas shales in two and three dimensions using nanometer-scale resolution imaging. Aapg Bulletin, 96(4):665-677. doi:10.1306/08151110188
[15] Darabi, H., Ettehad, A., Javadpour, F., & Sepehrnoori, K. (2012). Gas flow in ultra-tight shale strata. Journal of Fluid Mechanics, 710(12), 641-658. doi: 10.1017/jfm.2012.424
[16] Dardis, O., & Mccloskey, J. (1998). Lattice Boltzmann scheme with real numbered solid density for the simulation of flow in porous media. Physical Review E Statistical Physics Plasmas Fluids & Related Interdisciplinary Topics, 57(57):4834-4837. https://doi.org/10.1103/PhysRevE.57.4834
[17] EIA. Shale gas production drives world natural gas production growth, U.S. Energy Information Administration, 2016. https://www.eia.gov/todayinenergy/detail.php?id=27512
[18] Ezulike, O., Dehghanpour, H., Virues, C., Hawkes, R. V., & Jones, R. S. (2015). Flowback Fracture Closure: A Key Factor for Estimating Effective Pore Volume. Spe Reservoir Evaluation & Engineering, 19(04). https://doi.org/10.2118/175143-PA
[19] Freed, D. M. (1998) Lattice-Boltzmann Method for Macroscopic Porous Media Modeling. International Journal of Modern Physics C, 09(08): 1491-1503. https://doi.org/10.1142/S0129183198001357
[20] Gallegos, T. J., Varela, B. A., Haines, S. S., & Engle, M. A. (2015). Hydraulic fracturing water use variability in the United States and potential environmental implications. Water Resources Research, 51(7):5839-5845. doi: 10.1002/2015WR017278
[21] Gao, S., Hu, Z., Guo, W., Zuo, L., & Shen, R. (2013). Water absorption characteristics of gas shale and the fracturing fluid flowback capacity. Natural Gas Industry, 33(12):71-76. doi:10.3787/j.issn.1000-0976.2013.12.010
[22] Govaerts, J., Lucio, J. L., Martinez, A., & Muhlhaus, H. (2014) Lattice Boltzmann modeling and evaluation of fluid flow in heterogeneous porous media involving multiple matrix constituents. Computers & Geosciences, 62(2):198-207. https://doi.org/10.1016/0375-9474(81)90764-8
[23] Gruener, S., Hofmann, T., Wallacher, D., Kityk, A.V., & Huber, P., (2009). Capillary rise of water in hydrophilic nanopores. Physical Review E Statistical Nonlinear & Soft Matter Physics, 79(2), 853-857. doi: 10.1103/PhysRevE.79.067301
[24] Guo, Z., & Zhao, T. S. (2002). Lattice Boltzmann model for incompressible flows through porous media. Physical Review E Statistical Nonlinear & Soft Matter Physics, 66(3 Pt 2B):036304. doi: 10.1103/PhysRevE.66.036304
[25] Guo, Z., Zheng, C., & Shi, B. (2002). An extrapolation method for boundary conditions in lattice Boltzmann method. Physics of Fluids, 14(6):2007-2010. https://doi.org/10.1063/1.1471914
[26] Holt, J.K., Park, H.G., Wang, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P. Noy, A., & Bakajin, O. (2006). Fast mass transport through sub-2-nanometer carbon nanotubes. Science, 312(5776), 1034-7. doi: 10.1126/science.1126298
[27] Iii, M. B. A., Behie, G. A., & Trangenstein, J. A. (1981) Multiphase flow in porous media. CA: Gulf Pub. Co.
[28] Javadpour, F., Mcclure, M., & Naraghi, M. E. (2015). Slip-corrected liquid permeability and its effect on hydraulic fracturing and fluid loss in shale. Fuel, 160:549-559. https://doi.org/10.1016/j.fuel.2015.08.017
[29] Javadpour, F., Fisher, D., & Unsworth, M. (2007). Nanoscale gas flow in shale gas sediments. Journal of Canadian Petroleum Technology. 46(10):55–61. https://doi.org/10.2118/07-10-06
[30] Kang, Q., Zhang, D., & Chen, S. (2002). Unified lattice Boltzmann method for flow in multiscale porous media. Physical Review E Statistical Nonlinear & Soft Matter Physics, 66(5 Pt 2):056307. doi: 10.1103/PhysRevE.66.056307
[31] King, G. E. (2012). Hydraulic Fracturing 101: What Every Representative, Environmentalist, Regulator, Reporter, Investor, University Researcher, Neighbor and Engineer Should Know About Estimating Frac Risk and Improving Frac Performance in Unconventional Gas and Oil Wells. Paper presented at SPE Hydraulic Fracturing Technology Conference, Texas, USA.
[32] Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., & Viggen, E. M. (2017). The Lattice Boltzmann Method - Principles and Practice. CA: Springer Publishing Company.
[33] Kuila, U., Mccarty, D. K., Derkowski, A., Fischer, T. B. Topór, T., & Prasadc, M. (2014). Nano-scale texture and porosity of organic matter and clay minerals in organic-rich mudrocks. Fuel, 135(6):359-373. https://doi.org/10.1016/j.fuel.2014.06.036
[34] Landry, C. J., Eichhubl, P., Prodanović, M., & Wilkins, S. (2016). Nanoscale grain boundary channels in fracture cement enhance flow in mudrocks. Journal of Geophysical Research Solid Earth, 121(5). doi:10.1002/2016JB012810
[35] Levinger, N.E. (2002). Water in confinement. Science, 298(5599):1722-1723. doi: 10.1126/science.1079322
[36] Li, J., Li, X., Wu, K., Feng, D., Zhang, T., & Zhang, Y. (2017). Thickness and stability of water film confined inside nanoslits and nanocapillaries of shale and clay. International Journal of Coal Geology, 179, 253-268. https://doi.org/10.1016/j.coal.2017.06.008
[37] Loucks, R. G., Reed, R. M., Ruppel, S. .C, & Hammes, M. (2012). Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. Aapg Bulletin, 96(6):1071-1098. doi:10.1306/08171111061
[38] Lutz, B. D., Lewis, A. N., & Doyle, M. W. (2013). Generation, transport, and disposal of wastewater associated with Marcellus Shale gas development. Water Resources Research, 49(2):647-656. doi: 10.1002/wrcr.20096
[39] Majumder, M., Chopra, N., & Hinds, B. J. (2011). Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. Acs Nano, 5(5):3867. doi: 10.1021/nn200222g
[40] Naraghi, M.E., & Javadpour, F. (2015). A stochastic permeability model for the shale-gas systems. International Journal of Coal Geology, 140, 111-124. https://doi.org/10.1016/j.coal.2015.02.004
[41] Nicot J P, & Scanlon B R. Water use for Shale-gas production in Texas, U.S. Environmental Science & Technology, 2012, 46(6):3580. doi: 10.1021/es204602t
[42] Nithiarasu, P., Seetharamu, K. N., & Sundararajan, T. (1997). Natural convective heat transfer in a fluid saturated variable porosity medium. International Journal of Heat & Mass Transfer, 40(16):3955-3967. https://doi.org/10.1016/S0017-9310(97)00008-2
[43] Ortizyoung, D., Chiu, H.C., Kim, S., Voïtchovsky, K., & Riedo, E. (2013). The interplay between apparent viscosity and wettability in nanoconfined water. Nature Communications, 4(9):2482. doi: 10.1038/ncomms3482
[44] Passey, Q., Bohacs, K., Esch, W., Klimentidis, R., & Sinha, S. (2010). From oil-prone source rock to gas-producing shale reservoir – geologic and petrophysical characterization of unconventional shale-gas reservoirs. Paper presented at International Oil and Gas Conference and Exhibition in China, Beijing, China.
[45] Raviv, U., Laurat, P., & Klein, J. (2001). Fluidity of water confined to subnanometre films. Nature, 413(6851):51-4. doi: 10.1038/35092523
[46] Reagan, M. T., Moridis, G. J., Keen, N. D., & Johnson, J. N. (2015). Numerical simulation of the environmental impact of hydraulic fracturing of tight/shale gas reservoirs on near-surface groundwater: Background, base cases, shallow reservoirs, short-term gas, and water transport. Water Resources Research, 51(4):2543. doi:10.1002/2014WR016086
[47] Seta, T., Takegoshi, E., & Okui, K. (2006). Lattice Boltzmann simulation of natural convection in porous media. Mathematics & Computers in Simulation, 72(2):195-200. https://doi.org/10.1016/j.matcom.2006.05.013
[48] Singh, H. (2016). A critical review of water uptake by shales. Journal of Natural Gas Science & Engineering, 34:751-766. https://doi.org/10.1016/j.jngse.2016.07.003
[49] Sukop, M. C., & Thorne, D. T. (2007). Lattice Boltzmann Modeling: An Introduction for Geoscientists and Engineers. CA: Springer Publishing Company.
[50] Sun, Z., Li, X., Shi, J., Zhang, T., & Sun, F. (2017). Apparent permeability model for real gas transport through shale gas reservoirs considering water distribution characteristic. International Journal of Heat & Mass Transfer, 115, 1008-1019. doi: 10.1016/j.ijheatmasstransfer.2017.07.123
[51] U.S. Environmental Protection Agency (2012), Study of the potential impacts of hydraulic fracturing on drinking water resources: Progress report, report. https://www.epa.gov/sites/production/files/2015-01/documents/progressupdateonhydraulicfracturingstudy02_2012.pdf
[52] Vengosh, A., Jackson, R. B., Warner, N., Darrah, T. H., & Kondash, A. (2014). A critical review of the risks to water resources from unconventional shale gas development and hydraulic fracturing in the United States.[J]. Environmental Science & Technology, 48(15):8334-48. doi: 10.1021/es405118y
[53] Vidic, R. D., Brantley, S. L., Vandenbossche, J. M., Yoxtheimer, D., & Abad, J. D. (2013). Impact of shale gas development on regional water quality. Science, 2013, 340(6134):1235009. doi: 10.1126/science.1235009
[54] Walsh, S. D. C., Burwinkle, H., & Saar, M. O. (2009). A new partial-bounceback lattice-Boltzmann method for fluid flow through heterogeneous media. Computers & Geosciences, 35(6):1186-1193. https://doi.org/10.1016/j.cageo.2008.05.004
[55] Wang, J., Chen, L., Kang, Q., & Rahman S. S. (2016). Apparent permeability prediction of organic shale with generalized lattice Boltzmann model considering surface diffusion effect. Fuel, 181:478-490. https://doi.org/10.1016/j.fuel.2016.05.032
[56] Wu T, Li X, Zhao J, & Zhang D. (2017b). Mutiscale pore structure and its effect on gas transport in organic-rich shale. Water Resources Research, 53(7):5438–5450. doi:10.1002/2017WR020780
[57] Wu, K., Chen, Z., Li, J., Li, X., Xu, J., & Dong, X. (2017a). Wettability effect on nanoconfined water flow. Proceedings of the National Academy of Sciences of the United States of America, 114(13), 3358. doi: 10.1073/pnas.1612608114
[58] Wu, K., Chen, Z., Li, X., Guo, C., & Wei, M. (2016). A model for multiple transport mechanisms through nanopores of shale gas reservoirs with real gas effect–adsorption-mechanic coupling. International Journal of Heat & Mass Transfer, 93, 408-426. https://doi.org/10.1016/j.ijheatmasstransfer.2015.10.003
[59] Yassin, M.R., Begum, M., & Dehghanpour, H. (2017). Organic shale wettability and its relationship to other petrophysical properties: a Duvernay case study. International Journal of Coal Geology, 169:74-91. https://doi.org/10.1016/j.coal.2016.11.015
[60] Zhang, T., Li, X., Li, J., Feng, D., Li, P., Zhang Z.,…Wang, S. (2017a). Numerical investigation of the well shut-in and fracture uncertainty on fluid-loss and production performance in gas-shale reservoirs. Journal of Natural Gas Science and Engineering, (46) 421-435. doi: 10.1016/j.jngse.2017.08.024
[61] Zhang, T., Li, X., Sun, Z., Feng, D., Miao Y., Li, P., Zhang, Z. (2017b). An analytical model for relative permeability in water-wet nanoporous media. Chemical Engineering Science, 174:1-12. https://doi.org/10.1016/j.ces.2017.08.023

Acceptance of Terms and Conditions Click here to agree

Primary authors

Dr Tao Zhang (China University of Petroleum) Prof. Juntai Shi (China University of Petroleum (Beijing)) Prof. Xiangfang Li (China University of Petroleum (Beijing))

Presentation materials

There are no materials yet.