Speaker
Description
Phase separation and the vapor free delivery of liquids is a challenge in a compensated gravity environment. Porous materials are used for liquid and vapor phase separation. They enable the transport (wicking) of liquid and provide a barrier against penetrating gas (bubble point). The wicking process is the imbibition of liquid into porous structures due to capillary forces [1].
To predict the liquid behavior inside porous materials, numerical simulations on the macroscopic level can be performed. The macroscopic parameters – porosity, pore radius and permeability - have to be known to perform macroscopic simulations. For this purpose, a real sample was scanned using X-ray tomography and a 3D model was reconstructed from it. CFD simulations were performed on the pore level using a 3D model and an appropriate representative volume element (REV) to determine the macroscopic parameters.
References
Y. Grebenyuk and M. E. Dreyer. Wicking of liquid nitrogen into superheated porous structures. Cryogenics, 78:27-39, September 2016.
Acceptance of Terms and Conditions | Click here to agree |
---|