Speaker
Description
The recent developments of microfluidic is offering a new and efficient tool to visualize transport processes of bacterial fluids from microscopic to macroscopic scales and assess the influence of well controlled environments. We explored a situation where the motility and pore geometry are the dominant ingredients influencing the hydrodynamic dispersion of a bacterial fluid.
To this aim, we designed a microfluidic channel mimicking natural pore structures and choose a motile strain that does not stick to the surfaces. Doing so we were able to track bacteria from the pore scale and up to 15 pores. The statistical information obtained at that scales are then upscaled using continuous time random walk. In this presentation, we will show that the coupling between motility and flow induces a motility induces trapping effect and we will show its influence on the large scale transport.
Acceptance of Terms and Conditions | Click here to agree |
---|