14–17 May 2018
New Orleans
US/Central timezone

Salinity-dependent transport of viruses in porous media

14 May 2018, 15:43
2m
New Orleans

New Orleans

Poster + 3 Minute Pitch MS 4.08: Life in porous media: a microbiological approach Parallel 2-B

Speaker

Dong Zhang (Stevens Institute of Technology)

Description

Urbanization in coastal areas can be a significant source of pathogenic microorganisms, such as viruses and fecal indicator bacteria. Recently, coastal water contamination is becoming an important issue due to global warming [1]. Viruses can migrate long distances though porous media, such as beaches and coarse sediments, because of their biological characteristics, i.e., their size and motility. The attachment process of viruses onto soil grains can retard the virus transport, significantly. But, it can be reduced by the large salinity of the coastal water.
Here, a study that explores the effect of salinity on the instability of the virus front during transport in saturated porous media is presented. One dimensional (1D) transport model was developed following Cao et al. (2010) [2]. The model consists of two mass conservation equations of the virus and the salt concentration coupled through the constitutive equations of attachment/detachment mechanism. We observed that in the presence of hydrodynamic dispersion an instability develops at the virus front due to the formation of a mixing zone where the attachment is negligible. This instability develops in a pulse that travels at the speed of the average flow velocity. The magnitude of the pulse increases with the decreasing flow velocity.

References

[1] Whitman, R.L. et al. (2014) Microbes in beach sands: integrating environment, ecology and public health. Rev. Environ. Sci. Bio. 13, 329-368.
[2] Cao, H. et al. (2010) Salinity and soluble organic matter on virus sorption in sand and soil columns. Groundwater 48, 42-52.

Acceptance of Terms and Conditions Click here to agree

Primary authors

Dong Zhang (Stevens Institute of Technology) Valentina Prigiobbe (Stevens Institute of Technology)

Presentation materials

There are no materials yet.