Speaker
Description
The objective of this paper is experimental measurement of CO2 diffusion coefficient in different nanofluids including (SiO2), aluminum oxide (Al2O3) and titanium oxide (TiO2) nanofluids. Nanofluids in concentrations of 0.05, 0.1 and 0.2 wt% were used in experiments. Different factors such as temperature, weight percentage of nanoparticles, as well as the effect of particle size were investigated on CO2 diffusivity. The results clearly show that at 25˚C, the highest CO2 diffusivity occurred for 0.2% concentration of TiO2 nanofluid which is 6.5×10-9 m2/s. Also, at 30˚C, the highest CO2 diffusivity was obtained for 0.05% concentration of SiO2 nanofluid which is 7.8×10-9 m2/s. In addition, the highest CO2 diffusivity for 0.1% concentration of TiO2 nanofluid at 35˚C was 14.7×10-9 m2/s. Finally, a new correlation was developed for the effective diffusion coefficient of CO2 in nanofluid based on the nanofluids Reynolds (Re) number, nanoparticles Reynolds (Renp) number, Schmidt (Sc) number and nanoparticles volume fraction with an average relative error percent (REP) of 9.58% and R2 of 0.945.
Acceptance of Terms and Conditions | Click here to agree |
---|