Speaker
Description
Although two-phase flow in porous media is an established research field since decades, its theoretical background is still incomplete. In particular, while a universal definition of capillary pressure exists at the micro-scale, its upscaling to the macro-scale is still rather vague and a rigorous theory of capillarity at the macro-scale is missing. In this work, a new macroscopic theory of capillarity based on the volume averaging method is presented. The novel feature of the proposed averaging approach is the use of the superficial surface average for upscaling the relevant conservation equations for a surface. This allows for rigorous derivation of the macroscopic momentum balance equation for all the fluid-fluid interfaces contained within the Representative Elementary Volume (REV), thus resolving most of the shortcomings of previous studies, such as the averaging-scale inconsistency and the accounting for the different orientation of interfaces within the averaging volume. This latter aspect is described by an additional parameter arising in the proposed derivation, namely the intrinsic surface average of interface normal vectors
References
[1] Gray, W. G., & Hassanizadeh, S. M. (1989). Averaging theorems and averaged equations for transport of interface properties in multiphase systems. International Journal of Multiphase Flow, 15(1), 81-95.
[2] Hassanizadeh, S. M., & Gray, W. G. (1993). Thermodynamic basis of capillary pressure in porous media. Water resources research, 29(10), 3389-3405.
Acceptance of Terms and Conditions | Click here to agree |
---|