Speaker
Description
Biologically mediated processes are being developed as an alternative approach to traditional ground improvement techniques. Denitrification has been investigated as a potential ground improvement process towards liquefaction hazard mitigation. During denitrification, microorganisms reduce nitrate to dinitrogen gas and facilitate calcium carbonate precipitation as a by-product under adequate environmental conditions. The formation of dinitrogen gas desaturates soils and allows for potential pore pressures dampening during earthquake events. While, precipitation of calcium carbonate can improve the mechanical properties by filling the voids and cementing soil particles. As a result of small changes in gas and mineral phases, the mechanical properties of soils can be significantly affected. Prior research has primarily focused on quantitative analysis of overall residual calcium carbonate mineral and biogenic gas products in lab-scale porous media. However, the distribution of these products at the pore-scale has not been well-investigated. In this research, denitrification is activated in a microfluidic channel simulating a homogeneous pore structure. The denitrification process is monitored by sequential image capture, where changes in the gas and mineral phase are evaluated by image processing. The results from the experimental study are compared to the results of two-dimensional simulation model which involves the relevant biochemical reactions, diffusion, and convection.
Acceptance of Terms and Conditions | Click here to agree |
---|