Presentation materials
Understanding the factors and mechanisms behind the trapping and immobilisation of residual saturations of carbon dioxide (CO2) and oil phases in the pore spaces of reservoir rocks during immiscible fluid displacement is vital for geological CO2 storage and enhanced oil recovery (EOR) (1). The extent of trapping that occurs determines the success and efficiency of such subsurface operations....
Coalbed methane (CBM) plays a critical role in transiting the global energy supply from fossil fuel to renewables in the next 30 years. To understand and forecast CBM reservoir performance, coal relative permeability curves are needed as a key input parameter in reservoir simulators. Currently, the relative permeability curves are normally measured using steady-state method at the laboratory...
In this study, we investigate the dissociation pattern of CH4/CO2 mixed hydrate in porous media using high-pressure micromodel. We formed CH4/CO2 mixed hydrate from gaseous CH4 and liquid/gaseous CO2 to mimic the scenario where a CH4 hydrate reservoir has been injected with CO2. Direct visualization was carried out using a high-pressure, water-wet, silicon-wafer based micromodel with a pore...
Asphaltene is defined as the crude oil component, which is soluble in toluene and insoluble in light-n-alkane [1,2]. In the development of oil fields, the deposition of precipitated asphaltene in a reservoir is a serious problem since it leads to clogging of the pores of the rock, resulting in a reduction in permeability [3]. Wang & Civan’s model, which was constructed based on DBF...
Geological CO2 storage and CCS have a crucial role in reducing CO2 emission and therefore mitigating climate change. One of the prerequisites for selecting CO2 storage sites is a low permeability caprock preventing potential CO2 leakage and migration from the storage reservoir. The presence of fractures in the caprock can adversely affect the sealing capacity of caprocks. Chemical interactions...
While flow in porous media systems, such as in groundwater and rock fracture flow, is usually laminar (Re < 500), it has been increasingly recognized that recirculating flow structures can appear in these systems even at Re numbers less than one [1,2]. Furthermore, the structure of porous media leads to fluid stretching and folding that dramatically alters the fate of solutes, even in the...
Ice crystallization and mechanical damage at the pore scale
Rosa Sinaasappel, Clémence Fontaine, Scott Smith, Daniel Bonn, Noushine Shahidzadeh
Institute of Physics, University of Amsterdam , Science Park, 904, 1098XH Amsterdam
Abstract
Frost in wintry weather conditions is one of the major causes of the degradation of roads, buildings and outdoor artworks that are all porous...
Velocity fields in flow in permeable media are of great importance to many subsurface processes such as geologic storage of CO2, oil and gas extraction, and geothermal systems. Steady-state flow is characterized by velocity fields that do not change significantly over time. The flow field transitions to a new steady state once it experiences a disturbance such as a change in flow rate or in...
Carbonate rocks are multiscale systems where features in the order of few microns such as pores and throats interact with features on the order of a few millimetres, such as fractures and vugs. Fractures allow fluids to move at an extremely high speed through the reservoir and possibly leak out, which would undermine engineering efforts. We must thus be able to predict these fluid movements to...