31 May 2021 to 4 June 2021
Europe/Berlin timezone

Coal Relative Permeability Measurements Using Lab-on-a-chip Method

31 May 2021, 09:55
15m
Oral Presentation (MS11) Microfluidics in porous systems MS11

Speaker

Mr jicheng zhang (Shandong University of Science and Technology, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology)

Description

Coalbed methane (CBM) plays a critical role in transiting the global energy supply from fossil fuel to renewables in the next 30 years. To understand and forecast CBM reservoir performance, coal relative permeability curves are needed as a key input parameter in reservoir simulators. Currently, the relative permeability curves are normally measured using steady-state method at the laboratory conditions, where each effective flow capability of the coal core is then plotted against the corresponding water saturation. Field experience has constantly showed that the predicted results based on the curves from the steady-state method often overestimate field production.
In this work, the lab-on-a-chip (LOC) method was adopted to measure the evolution of relative permeability under controllable and repeatable conditions, and meanwhile to visualize water-gas two-phase in microchannels to gain critical flow information that conventional laboratory measurements are unable to offer. As the start, a single-channel microfluidics made of PDMS was first fabricated with a dimension of 100×100 µm (width by depth) and 24 mm in length. A number of tests were then conducted, including (i) the advancing contact angles of water with different wettability properties and the static contact angle to water and methane gas, (ii) similar to steady-state method, a series of injection tests with different gas-water volume ratios were conducted. Factors such as the flow velocity of each phase, the characteristics of flow field, and flow pressure of each phase, were also monitored; and (iii) the second step was repeated with different water wettability and injection rates.
The results show that the shape of water relative permeability from microfluidics tests is similar to that from conventional laboratory testing, but the gas relative permeability curve is very different between the two methods. The water relative permeability is 30 times lower than that predicted by Chima'model, and the gas relative permeability is even lower, 160 times. One reason, from our direct experimental observations, is that gas and water form discontinuous plug flow inside the microchannel and the interaction between the two phases along water-wetting surface significantly reduces gas flow capacity.
In additional, our results show that relative permeability values increase with injection rates and wettability, ranging from 10% to 20%. This work offers some interesting results that have rarely been captured and analyzed in core flooding measurements, and meanwhile the differences in relative permeability curves indicates that the data uncertainty associated with the steady-state method may be worth re-assessing.

Time Block Preference Time Block A (09:00-12:00 CET)
Acceptance of Terms and Conditions Click here to agree

Primary author

Mr jicheng zhang (Shandong University of Science and Technology, State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology)

Presentation materials