31 May 2021 to 4 June 2021
Europe/Berlin timezone

How does the power law dependency of flow rate on pressure gradient when viscous and capillary forces compete, scale with system size?

1 Jun 2021, 20:00
1h
Poster (+) Presentation (MS9) Pore-scale modelling Poster +

Speaker

Dr Subhadeep Roy (PoreLab)

Description

When two immiscible fluids flow in a porous media at rates where the capillary and viscous forces compete, there is growing experimental,
numerical and theoretical evidence that the flow rate depends on the pressure gradient minus a threshold pressure to a power between 1.5 to 2
[1]. At higher flow rates, where viscous forces dominate, the flow rate becomes proportional to the pressure gradient.

Imagine a porous medium of linear size $L$. There is a pressure difference $\Delta P$ between inlet and outlet, resulting in a flow rate
$Q$ across it. When the viscous and capillary forces compete, we have $Q \sim (\Delta P-P_t)^\beta$ where $P_t$ is the threshold pressure. When the viscous forces dominate, we have $Q \sim \Delta P$. We pose here two
questions: (1) what happens to the threshold pressure $P_t$ as $L\to\infty$ and (2) what happens to the pressure difference
$\Delta P_c$ at which $Q$ goes from non-linear to linear dependence on $\Delta P$?

Based on analytical result from the capillary fiber bundle model and numerical evidence from a dynamic network simulator [2], we demonstrate that $P_t\to 0$ and $\Delta P_c\to 0$ in this limit, $L\to\infty$.

References

[1] Tallakstad, K. T., Knudsen, H. A., Ramstad, T., Løvoll, G., Måløy, K. J., Toussaint, R., and Flekkøy, E. G., Phys. Rev. Lett., 102, 074502 (2009); Tallakstad, K. T., Løvoll, G., Knudsen, H. A., Ramstad, T., Flekkøy, E. G., and Måløy, K. J., Phys. Rev. E, 80, 036308 (2009); Sinha, S. and Hansen, A., EPL, 99, 44004 (2012); Roy, S., Hansen, A. and Sinha, S., Front. Phys. 7, 92 (2020).Aursjø, O., Erpelding, M., Tallakstad, K. T., Flekkøy, E. G., Hansen, A., and Måløy, K. J., Front. Phys. 2, 63 (2014); Sinha, S., Bender, A.T., Danczyk, M., Keepseagle, K., Prather, C.A., Bray, J.M., Thrane, L.W., Seymour, J.D., Codd, S.L. and Hansen, A., Transport Por. Media, 119, 77 (2017); Gao, Y., Lin, Q., Bijeljic, B. and Blunt, M. J., Water Resources Research, 53, 10274 (2017); Gao, Y., Lin, Q., Bijeljic, B. and Blunt, M. J., Phys. Rev. Fluids, 5, 013801 (2020); Zhang, Y., Bijeljic, B., Gao, Y., Lin, Q. and Blunt, M. J., eartharXiv, https://doi.org/10.31223/osf.io/2rxbn (2020).
[2] Roy, S., Sinha, S. and Hansen, A., arXiv:1912.05248.

Time Block Preference Time Block B (14:00-17:00 CET)
Acceptance of Terms and Conditions Click here to agree

Primary authors

Dr Subhadeep Roy (PoreLab) Santanu Sinha (Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China.) Alex Hansen (NTNU)

Presentation materials