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How does the power law dependency of flow rate on pressure gradient when viscous and 

capillary forces compete, scale with system size?
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C. Dynamic Pore Network Model [4]

Immiscible 2-phase Flow: When two immiscible fluids flow together through a porous 

media and both of them are fighting for the same pore space. 

Controlling Parameters

Rheological Behavior

Henry Darcy, Les Fontaines

Publiques de la Ville de Dijon, 

Dalmont, Paris, 647 (1856)

Transient Behavior Steady-state Behavior

Area of Application

E. W. Washburn, The 

dynamics of capillary flow, 

Phys. Rev. 17, 273 (1921)

S. Sinha, A. Hansen, D. 

Bedeaux and S. Kjelstrup, 

Phys. Rev. E 87, 025001 (2013)

Europhys. Lett. 99, 44004 

(2012), Transp. Porous Med. 

119, 77 (2017)

𝑞𝑝𝑎 𝑝𝑏 ∆𝑝 = 𝑝𝑎 − 𝑝𝑏

➢ Pressure gradient

➢ Geometry of the system

➢ Saturation of the fluids

➢ Capillary number

➢ Viscosity ratio

Oil recovery, CO2 sequestration, transport in fuel 

cells, ground-water management, catalyst 

support in automotive industry, blood flow in 

capillary vessels.

2D

3D

❑ Capillary pressure at   an interface: 

Young-Laplace equation [5]

❑ Flow through each pore:      

Washburn equation [6]

lij : link length

gij : link mobility
Assumptions

✓ The fluids are incompressible

Viscous Capillary

D. Results

𝐶𝑎 = 10−3𝐶𝑎 = 10−2
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∆𝑷 ~ 𝑪𝒂𝟎.𝟓𝟒

∆𝑷 ~ 𝑸𝟎.𝟓𝟒

𝑸~ ∆𝑷𝟎.𝟓𝟒

❑ Due to the capillary forces there 

exists a threshold pressure 𝑝𝑡 below 

which there is no flow. 

❑ Just above 𝑝𝑡 the relation between 

fluid velocity 𝒗 (= 𝑸/𝑨) and pressure         

gradient 𝑝 is non-linear due to path 

opening dynamics [1].

𝑸 = −𝑴𝜷 𝒔𝒊𝒈𝒏 ∆𝑷 𝜽 ∆𝐏 − 𝑷𝒕 .

( ∆𝑷 − 𝑷𝒕)
𝜷

𝒗 = −𝒎𝜷 𝒔𝒊𝒈𝒏 𝒑 𝜽 𝐩 − 𝒑𝒕 .

( 𝒑 − 𝒑𝒕)
𝜷

Here, 𝒑𝒕 = 𝑷𝒕/𝑳, 𝒑 = ∆𝑷 /𝑳 and 

𝒎𝜷 = 𝑴𝜷𝑳
𝜷/𝑨.

❑When 𝑝 is sufficiently high and all 

possible paths are open, we enter the 

Darcy limit [7].   

𝑸 = −𝑴𝒅∆𝑷 and 𝒗 = −𝒎𝒅. 𝒑

Here, 𝒑𝒕 = 𝑷𝒕/𝑳, 𝒑 = ∆𝑷 /𝑳 and 

𝒎𝜷 = 𝑴𝜷𝑳/𝑨.

❖ Our numerical results suggest the following observations:

I. The threshold pressure 𝒑𝒕 decreases in a scale-free manner with system size L. In the 

thermodynamic limit we observe zero resistance even if it is a two-phase flow. 

II. The mobility 𝒎𝜷 increases in a scale-free manner with 𝐿 and reaches infinite in the 

thermodynamic limit.   

III. Since the ‘Darcy line’ in case of velocity does not depend on system size, above two 

factor makes sense only if the non-linear to linear transition point 𝒑𝒎 decreases with 

increasing 𝐿. This suggest more linear region as size of the system is increased. 

B. Experiments [1,2,3]

✓ There is no velocity gradient inside a 

link. Each link comes with a single 

velocity/flowrate.
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(a) 𝒑𝒕 decreases with 𝑳

(b) 𝒎𝜷 increases with 𝑳

(c) 𝒑𝒎 decreases with 𝑳

< 𝑞 > ~ ∆𝑝2 − 𝑝𝑡
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