How does the power law dependency of flow rate on pressure gradient when viscous and capillary forces compete, scale with system size?

Subhadeep Roy^a, Santanu Sinha^{a,b} & Alex Hansen^a

^aPoreLab, Department of Physics, Norwegian University of Science and Technology (NTNU), Trondheim, Norway

NTNU PoreLab

A. Introduction

Immiscible 2-phase Flow: When two immiscible fluids flow together through a porous media and both of them are fighting for the same pore space.

Controlling Parameters

- > Pressure gradient
- ➤ Geometry of the system
- > Saturation of the fluids _ Ca
- > Capillary number -

 $\kappa A(p_b - p_a)$

Henry Darcy, Les Fontaines

Dalmont, Paris, 647 (1856)

Publiques de la Ville de Dijon,

Viscosity ratio

Area of Application

Oil recovery, CO₂ sequestration, transport in fuel cells, ground-water management, catalyst support in automotive industry, blood flow in capillary vessels.

Rheological Behavior

 p_a

 p_b

S. Sinha, A. Hansen, D. Bedeaux and S. Kjelstrup, Phys. Rev. E 87, 025001 (2013)

Europhys. Lett. 99, 44004 (2012), Transp. Porous Med. 119, 77 (2017)

 $|\Delta P| \leq \Delta P_{\rm c}$

B. Experiments [1,2,3]

C. Dynamic Pore Network Model [4]

Flow through each pore: l_{ij} : link length Washburn equation [6] g_{ij} : link mobility

$$q_{ij}(t) = -\frac{g_{ij}}{l_{ij}} \left(\Delta p_{ij} - \sum p_c \right)$$

☐ Capillary pressure at an interface: Young-Laplace equation [5]

Assumptions

- ✓ The fluids are <u>incompressible</u>
- ✓ There is <u>no velocity gradient</u> inside a link. Each link comes with a single velocity/flowrate.

0.23

 $S_{\rm w} = 0.5$

5.0

- ❖ Our numerical results suggest the following observations:
- I. The threshold pressure p_t decreases in a scale-free manner with system size L. In the thermodynamic limit we observe zero resistance even if it is a two-phase flow.
- II. The mobility m_{β} increases in a scale-free manner with L and reaches infinite in the thermodynamic limit.
- III. Since the 'Darcy line' in case of velocity does not depend on system size, above two factor makes sense only if the non-linear to linear transition point p_m decreases with increasing L. This suggest more linear region as size of the system is increased.

exists a threshold pressure p_t below which there is no flow.

Use Just above p_t the relation between fluid velocity n = O(A) and pressure

☐ Due to the capillary forces there

Just above p_t the relation between fluid velocity $\mathbf{v} (= \mathbf{Q}/\mathbf{A})$ and pressure gradient p is non-linear due to path opening dynamics [1].

$$Q = -M_{\beta} \, sign(\Delta P) \theta(|\Delta P| - P_t).$$
 $(|\Delta P| - P_t)^{\beta}$ $v = -m_{\beta} \, sign(p) \theta(|p| - p_t).$ $(|p| - p_t)^{\beta}$

Here, $p_t = P_t/L$, $p = |\Delta P|/L$ and

 $m_{\beta} = M_{\beta}L^{\beta}/A$.

When p is sufficiently high and all possible paths are open, we enter the Darcy limit [7].

$$Q=-M_d\Delta P$$
 and $v=-m_d.p$
Here, $p_t=P_t/L$, $p=|\Delta P|/L$ and $m_{eta}=M_{eta}L/A$.

2.4

 $\ln (p - p_t) (dyne.mm^{-3})$

References: [1] Tallakstad et. al, Phys. Rev. Lett. 102, 074505 (2009); [2] Rassi et. al, New. J. Phys. 13, 015007 (2011); [3] Zhang et. al, Geophys. Res. Lett. e2020GL090477 (2021); [4] Sinha et. al, Front. Phys. 8:548497 (2021); [5] Sinha et. al, Phys. Rev. E. 87, 025001 (2013); [6] Washburn, Phys. Rev. 17, 273 (1921); [7] Darcy, H. (1856). Les Fontaines publiques de la ville de Dijon. Paris: Victor Dalamont, 647.

b Beijing Computational Science Research Center (CSRC), Beijing, China