Presentation materials
Chemical exchange and energy storage devices utilize gas diffusion layers (GDLs) to facilitate the transport of gaseous reactants and liquid electrolytes to a catalyst site. The goal of the current work is to study the liquid-gas interface dynamics that result in flooding in GDLs in the context of electrochemical CO2 reduction (CO2R). In CO2R reactors, flooding of the porous layer imposes a...
During the last couple of decades, interest in small-sized, single-use, disposable devices such as rapid diagnostic kits (RDK’s) has dramatically soared [1]. Currently, such portable electronic devices rely heavily on conventional coin/button cell batteries for their operation. Although such batteries are very reliable and efficient, they become troublesome when such single-use kits have to be...
Among the aqueous redox flow battery systems, redox chemistries using a zinc negative electrode have a relatively high energy density [1]. In this study, a new flow field design was applied in a zinc-iodide flow battery, with some of the electrolyte flowing over the electrode surface, and a fraction of the flow passing through the porous felt electrode in the direction of current flow. The...
X-ray tomographic microscopy (XTM) has become a versatile tool for the analysis of the microstructure in fuel cells, lithium ion and redox flow batteries, as well as the transport processes therein. Advanced analysis tools like 3D interfacial curvature analysis have been developed to determine the capillary pressure in digital rock physics investigations [1] and were recently applied to...
Transitioning to a sustainable energy economy is one of the greatest challenges of this century. Integrating renewables (e.g., wind and solar power) into the grid must be accelerated to limit the devastating effects of climate change. Due to their intrinsic intermittency, large-scale energy storage must be deployed to balance the mismatch between supply and demand[1]. Redox flow batteries...
Lithium ion batteries consist of three main porous components: anode, cathode and an electronically isolating membrane in between. This so-called separator prevents physical contact between the two electrodes while the pore space is filled with electrolyte to allow ionic transport. Therefore, the separator is considered to be a crucial part in battery safety.[1] Filling of the electrode and...
Porous media are an integral part of energy conversion and storage electrochemical devices. Among them, we have gas diffusion layers (GDLs) and catalyst layers used in polymer electrolyte membrane fuel cells (PEMFCs), as well as fibrous electrodes used in redox flow batteries (RFBs) [1-10]. These porous media must fulfill several critical functions, such as providing a transport pathway for...
Temperature is known to be of importance for the ageing, performance, and safety of lithium-ion batteries. The heat released or absorbed inside a battery has therefore been a topic of much interest. The heat released or absorbed with the cell reaction, the reversible heat effect, is commonly included in thermal models through the entropy change of the reaction. The total reversible heat is...
Simulations based on the Lattice Boltzmann method are a powerful and efficient tool for the investigation of mesoscopic processes that are hard to study experimentally. Such simulations have been used successfully to study redox flow batteries [1]. But they have rarely been used to study transport mechanisms in other battery systems [2,3]. In the present work, the wetting process during the...
Porous structures have widespread importance in electrochemical processes. The specific morphology of the available porous materials, as well as their physical properties, crucially affect their applications, e.g. their use in fuel cells, batteries, or electrolysers. A key point is the correlation of transport properties (mass, heat, and charges) in the spatially—and in certain cases also...
A sophisticated water management is crucial for improved operating conditions of a polymer electrolyte membrane fuel cell (PEM FC). Therefore, it is necessary to understand the transport mechanisms of water throughout the cell constituents, where the an intelligent use and drainage of the water buffer can be used to enhance performance of the fuel cell. Microscale modeling of diffusion layers...
Research interest in Capacitive Deionization (CDI) as a novel approach for water desalination has increased significantly over the past decade or more. CDI shows significant promise for desalinating brackish or low salinity waters due to a decrease in the energy consumption per ion removed compared to conventional desalination methods such as reverse osmosis [1], [2]. Capacitive Deionization...