Understanding corrosion mechanisms and processes of UO2 fuel is essential for safe operation of nuclear reactors and storage of spent fuel [1-3]. We develop a 3D physics-based numerical model to simulate the thermal-chemical process during the corrosion of UO2 fuel pellets. Mass transfer, thermal conduction and solid chemical reactions are coupled in the model. The impact of temperature on...
Ice formation in porous media is a phenomenon characterized by coupled heat and mass transport, which could lead to considerable deformations [1]. Studying such a process is important in many engineering applications. In cold regions where periodic freezing occurs, porous materials like road pavements and concrete are usually subjected to frost damage. Moreover, some techniques such as...
Thermal protection systems (TPS) are used to ensure acceptable temperatures for the outer surface of a spacecraft during all mission phases and particularly during atmospheric re-entry. Carbon fiber felt is widely used in TPS systems due to its high porosity and low thermal conductivity [1]. It is an anisotropic material. In local thermal non-equilibrium (LTNE) models, a heat transfer...
Waste packages for disposal of radioactive waste originating from reprocessing of spent nuclear fuel typically include a stainless steel canister inside which the waste is immobilised in a (borosilicate) glass matrix. A potential disposal pathway for such wastes is in conventional mined geological disposal facilities (GDF) [1] or in deep boreholes [2]. In the latter concept, the packages are...
Thermal diffusion, the Ludwig – Soret effect, plays an important role in transport of heat and mass in fluid mixtures. The coupling between heat- and mass transport extends Fourier’s law for heat conduction and Fick’s law for mass diffusion and is quantified by the Soret coefficient. The effect has applications in industrial processes, such as utilization of waste heat [1], analyses of...
Marine sediments hosting methane hydrates (MH) cover pore sizes ranging from coarse‐grained sands to fine‐grained silts and clays. Coarse-grained sediments favour methane gas and methane saturated water flow and hence the formation of large concentrations of MH in pores (~60-90%) (e.g., Weinberger and Brown, 2006). However, most of the world's MH inventory exists disseminated within...
*Arts et Metiers Institute of Technology, University of Bordeaux, CNRS, Bordeaux INP, INRAE, I2M Bordeaux, F-33400 Talence, France.
+University of Bordeaux, CNRS, Arts et Metiers Institute of Technology, Bordeaux INP, INRAE, I2M Bordeaux, F-33400 Talence, France
This presentation addresses heat transfer in porous media with the assumption of local thermal non equilibrium (LTNE). The...
Continental shale oil in China is mainly of low-medium maturity. The formation is filled with heavy oil of low mobility and organic matter that unconverted. Horizontal drilling and hydraulic fracturing are insufficient to obtain economic production in such reservoir, thus in-situ heating and transform technology should be applied. To describe the decomposition of solid organic matter, cracking...
The energy storage technology is capable to fill the gap between energy demand and supply and make the renewable energy more efficient, which have also become the research emphasis recently. Among three existing energy storage techniques, thermochemical energy storage has the highest energy density and longest storage period. In this study, we constructed a two-dimensional numerical model of a...
Drying or evaporation in porous media is always modeled as special scenario of classic fluid-fluid displacement. However, when the evaporation is extensive, the temperature at drying front can be much lower than other regions in the porous media and thus resulting in significant temperature gradient. Consequently, Marangoni effect may appear and reshape the fluid flow pattern, which has not...
Storing energy in the form of heat has been under long-standing investigation for prospective applications, such as the capturing of excess heat from industrial processes as well as storing energy in concentrated solar power plants. Investigated mechanisms for the heat storage include the adsorption in porous media, materials undergoing phase changes and thermochemical reactions. Among these,...