The performance of many industrial applications is largely based on the quality and reliability of the guidance and support systems (high rotational speeds, low friction torque, damping capability, etc.). The subject presented here is part of an ANR project, entitled SOFITT (Saturated Open-pore Foams for Innovative Tribology in Turbomachinery) and aiming to find innovative technical solutions...
Inkjet printing consists of the ejection and deposition of ink droplets on substrates that are moving underneath the printhead [1]. For printing on paper, water-based inks have been developed that are beneficial from an environmental standpoint. The printing of semi-infinite lines on moving paper substrates lead to a steady-state distribution of moisture and heat, which are a suitable way to...
Surfactants play an important role in nearly the entire inkjet process including dispersion stability, jetting, spreading and absorption into porous media. In this work we used two main methods to extract the absorption dynamics of water and surfactant mixtures into porous media, namely Automatic Scanner Absorptiometer and a pico Liter drop watcher setup. Combining both methodologies it...
The imbibition of liquids in thin, porous films is a widely studied phenomenon [1]. For example, in the print industry, understanding the penetration of ink inside paper provides tools for improving the quality of the print. However, measuring inside submillimeter opaque films like paper with a high temporal resolution is a challenging task. Here we introduce a Garfield Nuclear Magnetic...
In printing industry research effort are currently focused on understanding evaporation and imbibition process of pico-liter droplets [1, 2, 3]. In addition to new commercial inks and formulations, new machines and technologies are evolving. Understanding phenomena such as evaporation and imbibition of pico-liter droplets into porous thin substrates, is therefore crucial in printing industry...
Nonwovens are highly porous media, typically used in industrial applications to transport and absorb fluids and/or to insulate against heat and noise. Moreover, they should be mechanically stable, especially under high compression. In the current talk, Kimberly-Clark and Fraunhofer ITWM present their joint work on modelling the mechanical compression behavior of thin nonwoven and the impact on...
The anode and cathode catalyst layers of proton-exchange membrane fuel cell, a thin porous media of approximately 10μm thickness and 50% porosity, have a complex solid structure composed by a support matrix to conduct electrons and provide structural integrity, ionomer films to conduct protons, open pores to transport gases, vapor, and liquid water; and dispersed catalyst particles, typical...
The dynamic pore-network modeling [1-3], as an efficient pore-scale tool, has been used to understand imbibition in porous media, which plays an important role in many subsurface applications. In this talk, we will present a dynamic pore-network model for imaged-based modeling of spontaneous imbibition in porous media. The µCT scanning of a porous medium of sintered glass beads is selected as...
Complex fluid responses to external forces, imposed at specific lengthscales and forcing amplitudes, are intimately linked to their internal microstructure. Accordingly, microstructure deformation and relaxation history span lengthscales from the microscale to the macroscale. When complex, biological fluids are driven through porous media, a faithful model of the trapped vs. transported fluid...