31 May 2021 to 4 June 2021
Europe/Berlin timezone

Evaluation of mineral surface area evolution during dissolution reactions

31 May 2021, 19:35
1h
Poster (+) Presentation (MS8) Mixing, dispersion and reaction processes across scales in heterogeneous and fractured media Poster +

Speaker

Mr Fanqi Qin

Description

Geochemical reactions in porous media can result in various patterns of flow channels and fractures which could potentially alter the properties of the porous media including porosity, permeability, tensile strength and tortuosity, etc. Enhancing our knowledge of these reactions at pore scale can help better predict the impacts of these reactions on the larger scales. Mineral surface area, as one of the controlling parameters in geochemical reactions, can be measured or estimated in various methods such as geometry, BET adsorption, imaging, etc. It has been reported in the literature that the estimated mineral surface area can vary up to 5 orders of magnitude. In addition, the knowledge on how mineral surface area evolves during the geochemical reactions is lacking. Currently, the commonly used theory assumes that mineral grains to be a smooth sphere and the surface area changes with changing sphere size. However, backscatter electron (BSE) images of rock samples revealed that most of the mineral grains are not spherical, and has different level of surface roughness. In this work, the evolution of mineral surface area will be evaluated for different mineral phases through core-flood experiments. Hydrochloric acid (HCl) will be used as the reacting fluid in the core-flood experiment with a half-inch core (Bandera Grey). Inductively coupled plasma-optical emission spectrometry (ICP-OES) will be used to determine the effluent chemistry, from which the reaction rate and reactive surface area can be estimated. Scanning electron microscopy (SEM) backscatter electron (BSE) images will be used to estimate mineral accessible surface areas and to compare the surface change of different mineral phases before and after experiments. X-ray micro computed tomography (micro-CT) will be used to analyze the pore space change and newly formed flow channels. Based on the experimental data and observations, we aim to find a relationship among porosity, volume fraction and mineral surface areas.

Time Block Preference Time Block C (18:00-21:00 CET)
Student Poster Award Yes, I would like to enter this submission into the student poster award
Acceptance of Terms and Conditions Click here to agree
Newsletter I do not want to receive the InterPore newsletter

Primary author

Mr Fanqi Qin

Co-author

Lauren Beckingham (Auburn University)

Presentation materials

There are no materials yet.