31 May 2021 to 4 June 2021
Europe/Berlin timezone

Root zone soil moisture estimation with Random Forest

4 Jun 2021, 15:45
15m
Oral Presentation (MS25) Subsurface Water Flow and Contaminant Transport Processes – Special Session in Honor of Harry Vereecken MS25

Speaker

Coleen Carranza (Wagenigen University)

Description

Accurate estimates of root zone soil moisture (RZSM) at relevant spatio-temporal scales are essential for many agricultural and hydrological applications. Applications of machine learning (ML) techniques to estimate root zone soil moisture are limited compared to commonly used process-based models based on flow and transport equations in the vadose zone. However, data-driven ML techniques present unique opportunities to develop quantitative models without having assumptions on the processes operating within the system being investigated. In this study, the Random Forest (RF) ensemble learning algorithm, is tested to demonstrate the capabilities and advantages of ML for RZSM estimation. Interpolation and extrapolation of RZSM on a daily timescale was carried out using RF over a small agricultural catchment from 2016 to 2018 using in situ measurements. Results show that RF predictions have slightly higher accuracy for interpolation and similar accuracy for extrapolation in comparison with RZSM simulated from a process-based model combined with data assimilation. RF predictions for extreme wet and dry conditions were, however, less accurate. This was inferred to be due to infrequent sampling of such conditions that led to poor learning in the trained RF model and to incomplete representation of relevant subsurface processes at the study sites in the RF covariates. Machine learning methods such as RF are promising additions to process-based models to estimate soil moisture. It offers flexibility to easily integrate various relevant datasets, such as remotely sensing imagery, in training RF models. Furthermore, these trained models can be advantageous in data-poor regions where accurate information on soil hydraulic parameters are missing or incomplete, especially when the primary goal is the estimation of soil moisture states.

Carranza, C., Nolet, C., Pezij, M., & van der Ploeg, M. (2021). Root zone soil moisture estimation with Random Forest. Journal of hydrology, 593, [125840]. https://doi.org/10.1016/j.jhydrol.2020.125840

Time Block Preference Time Block B (14:00-17:00 CET)
Acceptance of Terms and Conditions Click here to agree

Primary authors

Coleen Carranza (Wagenigen University) Mr Corjan Nolet (FutureWater) Mr Michiel Pezij (University of Twente) Dr Martine van der Ploeg (Wageningen University)

Presentation materials

There are no materials yet.