31 May 2021 to 4 June 2021
Europe/Berlin timezone

Numerical simulation of slope failure in a gas hydrate-bearing continental slope

1 Jun 2021, 19:00
1h
Poster (+) Presentation (MS12) Advances in modeling and simulation of poromechanics Poster +

Speaker

Sulav Dhakal (Louisiana State University)

Description

Gas hydrates are ubiquitous in seabed and submarine rocks in continental slopes around the world. Formation and dissociation of hydrates in porous spaces can alter the geomechanical strength of hydrate-bearing rocks. Dissociation of hydrates in submarine slopes decreases the elastic moduli and cohesion of rocks and can trigger slope failure. Failure of submarine slopes can cause damage to seafloor infrastructures, cause tsunamis, and release methane gas into the atmosphere. The bottom of hydrate-bearing rocks that are indicated by bottom-simulating reflector (BSR) plane can act as the glide plane for failure when large quantities of hydrate dissociate. Based on field observations from Cascadia Margin, a simple two-dimensional bench model is created in FLAC3D, and natural tectonic stress regime is applied. Dissociation of gas hydrate is simulated by a steady depressurization of hydrate-bearing sediments and moduli of elasticity and cohesion are updated based on saturation of gas hydrate. Mohr-Coulomb failure criterion is applied on the poro-elastic model to calculate the factor of safety and failure slope as hydrate saturation decreases. Results from the numerical simulation indicate that the failure slope coincides with the bottom of the hydrate-bearing rock layer. Factor of safety is the ratio between internal frictional angle of the rock to the angle of the slope failure plane relative to the horizon. The factor of safety decreases as hydrate saturation decreases in the hydrate-bearing rock layer. A factor of safety lesser than 1.0 to 1.15 indicates a high probability of slope failure. Results of this numerical simulation is used for validation and verification of field observations, and visualization of slope failure due to hydrate dissociation in continental slopes.

Time Block Preference Time Block C (18:00-21:00 CET)
Student Poster Award Yes, I would like to enter this submission into the student poster award
Acceptance of Terms and Conditions Click here to agree

Primary authors

Sulav Dhakal (Louisiana State University) Ipsita Gupta (Louisiana State University)

Presentation materials

There are no materials yet.