31 May 2021 to 4 June 2021
Europe/Berlin timezone

From the non-linear Darcy law for immiscible two-phase flow in porous media to constitutive equations for each fluid species

2 Jun 2021, 19:50
15m
Oral Presentation (MS6-A) Physics of multi-phase flow in diverse porous media MS6-A

Speaker

Alex Hansen (NTNU)

Description

There is growing evidence that the flow velocity $\vec v_p$ of an immiscible fluid mixture flowing in a porous medium depends on the local pressure gradient to a power in the range 1.5 to 2 when capillary and viscous forces compete [1]. The relative permeability equations relate the flow velocity of each immiscible fluid species, $\vec v_w$ and $\vec v_n$, to a gradient in the corresponding pressure field. These equations allow the mapping $(\vec v_w,\vec v_n) \to \vec v_p$. However, the opposite mapping, $\vec v_p \to (\vec v_w,\vec v_n)$ is not unique. Hence, attempts at generalizing the relative permeability equations to account for the non-linear behavior of $\vec v_p$ cannot use $\vec v_p$ as a starting point. Hansen et al. [2] have defined a co-moving velocity $\vec v_m$ which is related to but not equal to the velocity difference between the two fluid species and provided a transformation $(\vec v_p,\vec v_m) \to \vec (v_w,\vec v_n)$, making it possible relate the non-linear behavior of $\vec v_p$ to non-linearities in the behavior of $\vec v_w$ and $\vec v_n$. We use a dynamic network model [3] and relative permeability data from the literature to explore this mapping and what it means.

References

[1] Tallakstad, K. T., Knudsen, H. A., Ramstad, T., Løvoll, G., Måløy, K. J., Toussaint, R., and Flekkøy, E. G., Phys. Rev. Lett., 102, 074502 (2009); Tallakstad, K. T., Løvoll, G., Knudsen, H. A., Ramstad, T., Flekkøy, E. G., and Måløy, K. J., Phys. Rev. E, 80, 036308 (2009); Sinha, S. and Hansen, A., EPL, 99, 44004 (2012); Roy, S., Hansen, A. and Sinha, S., Front. Phys. 7, 92 (2020).Aursj{\o}, O., Erpelding, M., Tallakstad, K. T., Flekkøy, E. G., Hansen, A., and Måløy, K. J., Front. Phys. 2, 63 (2014); Sinha, S., Bender, A.T., Danczyk, M., Keepseagle, K., Prather, C.A., Bray, J.M., Thrane, L.W., Seymour, J.D., Codd, S.L. and Hansen, A., Transport Por. Media, 119, 77 (2017); Gao, Y., Lin, Q., Bijeljic, B. and Blunt, M. J., Water Resources Research, 53, 10274 (2017); Gao, Y., Lin, Q., Bijeljic, B. and Blunt, M. J., Phys. Rev. Fluids, 5, 013801 (2020); Zhang, Y., Bijeljic, B., Gao, Y., Lin, Q. and Blunt, M. J., eartharXiv, https://doi.org/10.31223/osf.io/2rxbn (2020).
[3] Hansen, A., Sinha, S., Bedeaux, D., Kjelstrup, S., Gjennestad, M. A., and Vassvik, M. Transp. Porous Media, 125, 565 (2018).}
[4] Sinha, S., Gjennestad, M. Aa., Vassvik, M. and Hansen, A., arXiv:1907.12842 (2019).

Time Block Preference Time Block B (14:00-17:00 CET)
Acceptance of Terms and Conditions Click here to agree

Primary authors

Dr Subhadeep Roy (PoreLab) Mr Håkon Pedersen (PoreLab) Santanu Sinha (Beijing Computational Science Research Center, 10 East Xibeiwang Road, Haidian District, Beijing 100193, China.) Alex Hansen (NTNU)

Presentation materials

There are no materials yet.