31 May 2021 to 4 June 2021
Europe/Berlin timezone

The Influence of Motility on Bacterial Accumulation in a Microporous Channel

31 May 2021, 19:35
1h
Poster (+) Presentation (MS5) Biochemical processes and biofilms in porous media Poster +

Speaker

Christoph Lohrmann (University of Stuttgart)

Description

Swimming microorganisms are often encountered in confined, porous geometries where also an external flow is present, e.g. in filters or inside the human body. To investigate the interplay between microswimmer motility, confinement and external flows, we developed a model for swimming bacteria based on point coupling to an underlying lattice Boltzmann fluid. With this implementation, straight swimming motion interrupted by random reorientation events reproduces the motility pattern of the run-and-tumble bacterium E. coli.
We present the application of the model to the study of bacterial dynamics in a simplified porous geometry: A rectangular channel with a single cylindrical obstacle. In accordance with experimental measurements, the results show asymmetric accumulation behind the obstacle only when the bacteria are active and an external flow is present[1]. We quantitatively compare bacterial densities from simulations to the experiments and investigate the physical mechanisms that lead to accumulation.

[1] M. Lee et al.: The Influence of Motility on Bacterial Accumulation in a Microporous Channel, Soft Matter advance article, 2021, DOI: 10.1039/D0SM01595D

References

M. Lee et al.: The Influence of Motility on Bacterial Accumulation in a Microporous Channel, Soft Matter advance article, 2021, DOI: 10.1039/D0SM01595D

Time Block Preference Time Block B (14:00-17:00 CET)
Student Poster Award Yes, I would like to enter this submission into the student poster award
Acceptance of Terms and Conditions Click here to agree
Newsletter I do not want to receive the InterPore newsletter

Primary authors

Christoph Lohrmann (University of Stuttgart) Mr Miru Lee (University of Göttingen) Christian Holm (University of Stuttgart, Institut für Computerphysik)

Presentation materials

There are no materials yet.