Trapping of fluid in porous media by capillary forces is a key process in many subsurface processes. It can be favorable to store carbon dioxide in deep saline aquifers, or unfavorable for groundwater remediation and in petroleum production, where droplets of contaminants/oils are trapped in the pore-space by capillary forces. Wettability properties at the vicinity of three-phase contact...
The study of mass-transfer in confined geometries is extremely important in many engineering and biological systems. In the context of geological carbon sequestration, carbon dioxide is injected into subsurface reservoirs leading to the formation of elongated bubbles that can either be trapped, move, or interact with the solid matrix. The presence of carbon dioxide has the effect of increasing...
Pore scale imaging and modelling have played an enormous role in advancing knowledge in complex transport phenomena within porous media. We discuss new challenges and directions in pore-scale research by integrating artificial intelligence. These include the recreation of porous media images at a super-resolution, multimineral segmentation and prediction of petrophysical properties with...
Ganglia (bubbles, or droplets) are widespread in porous media of various industrial applications. Thermodynamic properties of a ganglion, such as its morphology, free energy, capillary pressure, surface energy, etc., are crucial in determining its transport and reactive performance. Although these in homogeneous porous media have been recently resolved [1, 2], it is still challenging to...
Transition to renewable energy sources, due to their naturally intermittent production, requires developing large-scale storage technologies. Underground Hydrogen Storage (UHS) in porous formations is a promising approach to providing a giant storage capacity. To ensure the efficiency of the storage operation, multiscale modeling and simulation strategies are essential. Since micro-scale...
We developed a thermodynamically-based pore network model to simulate fluid intermittency during two-phase flow through porous media. Relationship between pressure gradient and flow rate during multiphase flow in porous media have been observed to transition from linear to non-linear at intermediate flow rates in recent studies. With the aid of high resolution X-ray tomography, intermittent...
Evaporation from a porous medium into a free flow is one of the fundamental processes
in environmental systems (e.g. the evaporation of water from soil into the atmosphere
[1]). In technical systems self-pumping transpiration cooling can be realized with the
help of porous materials where the combination of capillary action and phase change
is a promising approach to cool structures due to...
Residual bubbles in porous media, initially emerging at non-equilibrium state by direct injection, phase changes or imbibition, spontaneously coarsen towards a thermodynamic equilibrium state. During coarsening process, bubbles’ morphology and pore occupancy change that affects hydraulic conductivity, mass & heat transfer coefficients, and chemical reaction kinetics. The kinetics from initial...
Convective drying of porous media is central to many engineering applications, ranging from spray drying over water management in fuel cells to food drying. To improve these processes, a deep understanding of drying phenomena in porous media is crucial. Therefore, detailed simulation of multiphase flows with phase change is of great importance to investigate the complex processes involved in...
Porous electrodes are performance- and cost-defining components in modern electrochemical systems as they determine the hydraulic resistance, facilitate mass transport, conduct electrons and heat, and provide surfaces for electrochemical reactions [1]. Thus, electrode engineering is an effective approach to improve cost competitiveness by increasing power density. In convection-enhanced...
Nuclear Magnetic Resonance (NMR) is a powerful tool to assess physical quantities that characterize porous media, offering detailed information about the fluid molecules confined in the pore space. This work presents a computational implementation of image-based simulations of NMR experiments in porous media using the Random Walk method with a particular focus on reservoir rocks. We explore...
Extended research is necessary in view of delivering safe, sustainable and publicly acceptable solutions for the management of radioactive waste across Europe now and in the future. In light of this, a full understanding of the migration behavior of corrosion gases in clay rock environment is of fundamental importance for the reliability of scenarios predicting the long-term safety of...
Pore-resolved direct numerical simulations (DNS) are performed for turbulent open channel flow over a randomly packed porous sediment bed over a range of permeability Reynolds numbers of $Re_K = {\mathcal O}$(1-10) representative of aquatic systems. A fractional time-stepping based fictitious domain method (Apte et al. 2008) is used to simulate flow over spherical sediment particles on...
Understanding the mechanical behavior and fluid flow properties of porous media composed of packed particulate has numerous applications within the physical sciences and engineering, being pertinent to the study of naturally occurring geo-materials, such as sedimentary rocks, and engineered media, such as fuel cells and catalysts. Both manmade and geologic granular porous media often exhibit...
Triple periodic minimal surfaces can be approximated to three-dimensional cell structures, which are found in many forms in nature, such as on butterfly wings or on the skeletal plate of a sea urchin. The structures are representable by a mathematical periodic function. For sheet-based structures, the result is two disjoint, intertwined channels with a uniformly curved surface. The three most...
The drying of heterogeneous porous materials is accompanied by capillary pumping from large to small pores which results in the surface remaining partly wet, guaranteeing an almost constant drying rate. At certain degree of saturation, the capillary pumping is turned off and the material experiences a decreasing drying rate. A two-component two-phase Lattice Boltzmann model [1] is used at...
Freeze-drying is investigated based on a non-isothermal pore network model of coupled heat and mass transfer [1]. Simulations were carried out using image data from X-ray tomography (µ-CT) of freeze-dried maltodextrin, which was originally prepared with a solid content of c = 0.2 w/w solved in water [2]. Freeze-drying was conducted at a shelf temperature of -18°C and a chamber pressure of 10...
The flow of non-Newtonian fluids in porous materials can be found in many industrial applications such as chemical engineering, subsurface engineering (de-contamination, energy production), and the food industry.
The relation between the shear stress and viscosity in non-Newtonian fluids is not linear and it is time-dependent, making it difficult to understand their behaviour. Due to the...
Subsurface CO2 storage is a means to limit emissions to the atmosphere and global warming. Residual trapping, which occurs when brine invades the pore space occupied by the migrating CO2 plume and creates disconnected CO2 ganglia, is one of the mechanisms by which significant amounts of CO2 can be stored safely in the subsurface [1]. Experiments on rock samples show that larger amounts of CO2...
Wettability has an enormous impact on the effectiveness of enhanced oil recovery (EOR) techniques and geologic carbon storage (GCS). Water flooding or carbon dioxide injection in EOR or GCS imposes pore pressure on the media, which can induce deformation or even failure of porous media. Experimental studies have shown that wettability is a key factor in determining flow patterns along with...
Quasi two-dimensional approximations of interfacial curvature, present in current network models of multi-phase flow in porous media, are extended to three dimensions. The effect of each principal radii of curvature on displacement is analysed using high resolution direct numerical simulations on synthetic geometries, for both uniform and mixed-wet wetting states, and the analysis is used to...
A large portion of shale gas is stored in the kerogen matrix as an adsorbed phase, responsible for the slow production after primary recovery. During CO2 injection, the preferential adsorption of CO2 over CH4 in the shale organic matrix facilitates the desorption of CH4; therefore, gas recovery can be potentially enhanced. In this study, the Navier-Stokes equation and the advection-diffusion...
The foundation of homogenisation methods rests on the postulate of Hill-Mandel, describing energy consistency throughout the transition of scales. The consideration of this principle is therefore crucial in our discipline of Digital Rock Physics which focuses on the upscaling of rock properties. For this reason, numerous studies have developed numerical schemes for porous media to enforce the...
Spontaneous imbibition of brine at nonzero initial water saturation is an important mechanism for recovering crude oil from mixed-wet heterogeneous carbonate rock. Many studies focus on studying or modeling spontaneous imbibition of brine into fully oil-saturated (i.e., without connate water) or water-wet porous media. As a result, adequate models describing spontaneous imbibition process into...
Steady-state transitions in porous media, here defined as a discontinuity in one or more macroscopic observables as a function of Reynolds number while the flow remains steady, are known to occur for a multitude of different types of porous media. In previous studies, it has been discovered that these transitions coincide with the development of inertial cores and a reduction in the spatial...
In the eye of climate change, Carbon Capture and Storage (CCS) gained importance as a large-scale option to permanently sequester CO2. To ensure storage safety, it is crucial to understand trapping mechanisms and the trapping potential. To do so in a time-efficient way, the application of Digital Rock Physics Simulation has become a major tool. The presentation will focus on capillary trapping...
The definition of an optimal reservoir management strategy is fundamental for the primary production of oil and gas, Enhanced Oil Recovery, Underground Gas Storage, Underground Hydrogen Storage, CO2 storage, and geothermal systems. Due to the complexity of geological formations, the uncertainty associated to the fluid-rock interaction parameters must be estimated and possibly mitigated by the...
Lattice Boltzmann Method (LBM) has for long now been successfully used
as a numerical tool for modeling fluid flow [1]. This is due to the local treatment of nonlinear parts of the algorithm, the ability to model non-trivial particle interactions in a bottom-up manner, the potential for parallelization, and the ease of implementation. However, applied to complex geometries often encountered...
A continuum sharp-interface modelling of the molecular motion in the vicinity of the three-phase dynamic contact line is a significant research problem [1] having extensive practical relevance [2]. It is a prerequisite to full pore-scale Direct Numerical Simulation (DNS) with a high-fidelity representation of dynamic wetting phenomena. To investigate the three-phase dynamic contact line in the...
Soils are porous multiphase geomaterials, composed of i) a particulate solid phase, and ii) a fluid phase, hosted within the soil’s porosity. Due to their complex discrete nature, the macroscopic response of soils depends on the mechanisms occurring at the particle or pore scale. The particle-to-particle interactions can be mechanical and/or electrochemical in nature, depending on the soil...
The problem of filtration for flows carrying particulate matter is of interest in many different fields: both for drinking water purification, in biological sterilization processes, or in the chemical and process industry for the removal of solid particulate feed of catalytic packed-bed reactors in refining processes.
Traditional filters show inefficiencies in removing particles with...
Naturally occurring methane hydrates are a world-wide occurrence from the arctic permafrost to the continental shelves in tropical areas. Methane hydrates have the potential to be produced as an energy resource. Additionally, they can undergo phase transition (formation or dissociation) as a result of changing environmental conditions, and predicting the behavior is important for design of...
Wettability design is of crucial importance for optimization of multiphase flow behaviour in gas diffusion layers (GDLs) in fuels cells. The accumulation of electrochemically-generated water in the GDL will impact fuel cell performance. Hence, it is necessary to understand multiphase displacement to design optimal pore structures and wettability to allow the rapid flow of gases and water in...
Due to the wide application of nanotechnology in several fields including various consumer products, industrial processes, and biomedical fields, release of nanoparticles into the subsurface is inevitable. Once they enter the soil, they get transported through the vadose zone, where a fraction of the infiltrated particles is retained at grain surfaces (also called solid-water interface, SWI),...
Understanding multiphase flow through porous media is an important study in many scientific and engineering processes. An example of such process is corrosion of steel inside reinforced porous materials, such as soil or concrete, where air-water distribution at the steel surface is directly related to corrosion mechanisms and has a great impact on durability of reinforced structures...
Pore network modelling as a robust and powerful technique has been used to study multiphase flow through porous media for many years. Micro-CT imaging makes it possible to acquire actual pore structure geometry used to extract the pore network structure. Also, multiphase micro-CT images can be used to calibrate the pore-scale distribution of wettability. However, in many kinds of porous media...
Geologic storage of CO2 is a critical decarbonization pathway. CO2 and other fluids are primarily stored through four trapping mechanisms (physical/structural, capillary, dissolution, and mineralization trapping) all of which exhibit spatial-temporal changes throughout a porous material. Controls on the distribution of mineral dissolution and carbonate precipitation and the evolution of...
The injection of cold water into the subsurface to recharge the aquifer during the exploitation of geothermal resources mobilizes fine particles (colloids) which can detach, precipitate, or even deposit irreversibly clogging the porous formation at the vicinity of the well. These processes very often lead to a reduction in the operating time of the wells and additional operating costs are...
A pore network model for calcination of a single particle (made of magnesium carbonate) is developed in order to better understand and quantify the heat and mass transfer within the particle, morphological changes of its pore structure, chemical reactions and the connection to the particle’s fluid-solid surrounding. Both the pore space and solid skeleton of the particle are approximated as...