Speaker
Description
Quasi two-dimensional approximations of interfacial curvature, present in current network models of multi-phase flow in porous media, are extended to three dimensions. The effect of each principal radii of curvature on displacement is analysed using high resolution direct numerical simulations on synthetic geometries, for both uniform and mixed-wet wetting states, and the analysis is used to calibrate network model extensions. A fully three-dimensional consideration of interfacial curvature is shown to be a key step in improving the physical accuracy of network models. Finally, the calibrated network model is used to obtain predictions of relative permeability and capillary pressure for a water-wet and a mixed-wet Bentheimer sandstone, and compared to experimental measurements, where the inclusion of three-dimensional interfacial curvature yields more accurate predictions.
Participation | In-Person |
---|---|
Country | United Kingdom |
MDPI Energies Student Poster Award | No, do not submit my presenation for the student posters award. |
Acceptance of the Terms & Conditions | Click here to agree |