Speaker
Description
The generalized physics-based scaling curve method proposed by Patzek et al. (2013) is an excellent alternative to the decline curve methods that forecast gas production from shale reservoirs. However, it still neglects the multiphase flow effects and may lead to unreliable hydrocarbon production prediction from mudrock reservoirs. In this study, we perform a global sensitivity analysis using a compositional reservoir simulator to analyze the sensitivity of the scaling factors describing the physics-based method to multiphase flow effects varying selected input factors. We built a conceptual reservoir model of a typical, hydraulically fractured shale condensate gas well using a commercial reservoir simulator. We select the fluid input factors and their range of possible values over which we analyze the scaling curve. We perform a space-filling design using the MaxiMin Latin Hypercube sampling method. We run our simulation tests and estimate the scaling parameters: characteristic time of pressure interference between neighboring hydraulic fractures (
Participation | In-Person |
---|---|
Country | Saudi Arabia |
MDPI Energies Student Poster Award | Yes, I would like to submit this presentation into the student poster award. |
Acceptance of the Terms & Conditions | Click here to agree |