22–25 May 2023
Europe/London timezone

Dynamical and thermodynamic aspects of evaporation of solutions from nanoporous media

22 May 2023, 12:05
15m
Oral Presentation (MS13) Fluids in Nanoporous Media MS13

Speaker

joachim trosseille

Description

Water condensation and evaporation from saline porous materials has attracted the attention of scientists for years due to a large field of applications: salt weathering of buildings, desalination of water, CO2 sequestration, soil decontamination, etc… [1, 2, 3]. A complete understanding of related nanoscale processes is however lacking, in particular concerning the coupling between evaporation/condensation and crystallization/deliquescence in confinement [4]. While the comprehension of the phenomenon has progressed in the past few years [4, 5, 6], there are still some challenges remaining in characterizing and understanding these processes.

Here we carried out thermodynamic experiments coupling sorption isotherms of nanoporous media containing salt, to dynamical measurement of the evaporation of salt solution droplets from the surface of the same nanoporous media. We show that we can account for both thermodynamic and dynamical experiments by using a minimal model involving coupled phase change of the solvent (water evaporation) and the solute (salt crystallization).

[1] Huber P., Journal of Physics: Condensed Matter 27:103102 (2015)
[2] Steiger M., Journal of Crystal Growth 282 (2005) 455–469
[3] Scherer G.W., Cement and Concrete Research 34(9), 2004, 1613-1624
[4] Jain P. et al., Langmuir 2019, 35, 3949−3962
[5] Vincent O. et al., Langmuir 2017, 33, 1655−1661
[6] Talreja-Muthrejas T. et al., Langmuir 2022, 38, 10963−10974

Participation In-Person
Country France
MDPI Energies Student Poster Award No, do not submit my presenation for the student posters award.
Acceptance of the Terms & Conditions Click here to agree

Primary authors

joachim trosseille HUGO BELLEZZA Sujeet Dutta (Institut Lumière Matière, CNRS, Lyon, France) Olivier Vincent (CNRS)

Presentation materials

There are no materials yet.