Reservoir simulators have been developed in the past 70 years. They have been widely used to predict, understand, and optimize complex physical processes in modeling and simulation of multiphase fluid flow in petroleum reservoirs. These simulators are important for understanding the fate and transport of chemical species and heat and maximizing the economic and environmental performance of...
The increasing need of reliable and sustainable energy supply, storage and portability, combined with global industrial competition, imposes a stringent schedule for battery research and development. Among the different technologies available nowadays, rechargeable zinc-based batteries are promising candidates owing to their comparatively high specific energy, abundant and distributed...
With the Industrial Revolution in the 19th century, humans began to create technologies that consume huge amounts of energy. Initially, people used solid coal as an energy resource. In the 20th century, the focus changed to liquid petroleum. In the 21st century, where the depletion of petroleum has become a critical concern, gases (e.g., natural gas and biogas, and even air) should play...
Theoretical and computational models of flow through porous media typically ignore inertial effects and use Darcy’s law (and extensions thereof) to approximate momentum balance. This contrasts with experimental observations of rapid fluid movement in the pore space, such as Haines jumps that occur in presence of multiple flowing phases. Also, neglecting acceleration may lead to contradictions...
Heat transfer in porous media is ubiquitous in many industrial applications, such as heat exchangers, heat pipes, heat storage system, and porous coatings for thermal radiation. Thus, it is of great importance to understand in depth the heat transfer in porous media. This, however, is still a huge challenge, mainly attributed to the following fact. First, heat transfer in porous media is a...
The transition of the global energy system from traditional fossil fuels to renewable and sustainable energy sources and processes necessitates the development of new materials and the reinvention of existing ones. Zeolites will play a key role in facilitating this transition due to their exceptional qualities, which make them valuable in essential catalytic and adsorption processes, such as...
Sustainable energy technologies that involve subsurface gas storage require reliable containment of buoyant fluids. An example is geologic carbon sequestration in which large volumes of CO2 are injected deep underground into porous formations with overlying caprocks. Storage security could be jeopardized if fractures exist, so strategies are needed to seal permeable flow paths. In our work,...
Interfacial transport and phase transition are essential for a large variety of energy and sustainability applications, while in-situ characterization provides instrumental ways of probing and enhancing thermal-fluid transport in porous media. In this talk, I will share our recent progresses on water evaporation and ice melting in homogeneous and heterogeneous opaque porous media, by utilizing...
Single-phase and multi-phase flow and transport in porous media are central to a wide range of natural and industrial processes, including geologic CO2 sequestration, enhanced oil recovery, and water infiltration into soil. Petroleum engineers use reservoir simulation models to manage existing petroleum fields and to develop new oil and gas reservoirs, while environmental scientists use...
Research of the multi-scale, multi-phase, and multi-processes system is of great interest in understanding subsurface environments. However, the coupled flow and transport processes are complex yet challenging for model development and utilization. There have been numerous object-oriented and easy-to-use models/codes across scales to facilitate consistency, continuity, and reproducibility in...
As is common for subsurface applications, the planning and operation of geological carbon storage relies heavily on computational models. Arguably, several decades of experience from the extraction of subsurface resources support the validity of these tools, in particular during the active carbon dioxide injection and early post-injection phase. However, validation of long-term carbon storage...
When two immiscible fluids move through the same pore space, they interact. It is therefore hard to believe that the relative permeabilities describing the mobility of each fluid should be independent of each other. Yet, ever since 1936 when the concept of relative permeability was born, they have been treated that way. It is the aim of this talk to demonstrate that the intuition however is...